Tsiemonsma commited on
Commit
c6a5d01
·
verified ·
1 Parent(s): 9622ae4

Upload 4 files

Browse files
Files changed (4) hide show
  1. best.pt +3 -0
  2. data.yaml +6 -0
  3. detect.py +438 -0
  4. requirements.txt +49 -0
best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2ed7f935848ec90e985a008cb63b90e82e30e1615d93720cf6bbebccd762cf4
3
+ size 14492776
data.yaml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ train: F:\yolov5\images\train
2
+ val: F:\yolov5\images\val
3
+ nc: 10 # Number of classes (change to the actual number of object classes)
4
+ names: ['Arbacia_lixula', 'Astropecten_spinulosus', 'Callistoctopus_macropus','Diadema_setosum','Echinaster_sepositus','Loligo_vulgaris','Octopus_vulgaris','Sphyraena_sphyraena','Seranus_scribba','Pterois_miles']
5
+
6
+
detect.py ADDED
@@ -0,0 +1,438 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLOv5 🚀, AGPL-3.0 license
2
+ """
3
+ Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
4
+
5
+ Usage - sources:
6
+ $ python detect.py --weights yolov5s.pt --source 0 # webcam
7
+ img.jpg # image
8
+ vid.mp4 # video
9
+ screen # screenshot
10
+ path/ # directory
11
+ list.txt # list of images
12
+ list.streams # list of streams
13
+ 'path/*.jpg' # glob
14
+ 'https://youtu.be/LNwODJXcvt4' # YouTube
15
+ 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
16
+
17
+ Usage - formats:
18
+ $ python detect.py --weights yolov5s.pt # PyTorch
19
+ yolov5s.torchscript # TorchScript
20
+ yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
21
+ yolov5s_openvino_model # OpenVINO
22
+ yolov5s.engine # TensorRT
23
+ yolov5s.mlpackage # CoreML (macOS-only)
24
+ yolov5s_saved_model # TensorFlow SavedModel
25
+ yolov5s.pb # TensorFlow GraphDef
26
+ yolov5s.tflite # TensorFlow Lite
27
+ yolov5s_edgetpu.tflite # TensorFlow Edge TPU
28
+ yolov5s_paddle_model # PaddlePaddle
29
+ """
30
+
31
+ import argparse
32
+ import csv
33
+ import os
34
+ import platform
35
+ import sys
36
+ from pathlib import Path
37
+
38
+ import torch
39
+
40
+ FILE = Path(__file__).resolve()
41
+ ROOT = FILE.parents[0] # YOLOv5 root directory
42
+ if str(ROOT) not in sys.path:
43
+ sys.path.append(str(ROOT)) # add ROOT to PATH
44
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
45
+
46
+ from ultralytics.utils.plotting import Annotator, colors, save_one_box
47
+
48
+ from models.common import DetectMultiBackend
49
+ from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
50
+ from utils.general import (
51
+ LOGGER,
52
+ Profile,
53
+ check_file,
54
+ check_img_size,
55
+ check_imshow,
56
+ check_requirements,
57
+ colorstr,
58
+ cv2,
59
+ increment_path,
60
+ non_max_suppression,
61
+ print_args,
62
+ scale_boxes,
63
+ strip_optimizer,
64
+ xyxy2xywh,
65
+ )
66
+ from utils.torch_utils import select_device, smart_inference_mode
67
+
68
+
69
+ @smart_inference_mode()
70
+ def run(
71
+ weights=ROOT / "yolov5s.pt", # model path or triton URL
72
+ source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam)
73
+ data=ROOT / "data/coco128.yaml", # dataset.yaml path
74
+ imgsz=(640, 640), # inference size (height, width)
75
+ conf_thres=0.25, # confidence threshold
76
+ iou_thres=0.45, # NMS IOU threshold
77
+ max_det=1000, # maximum detections per image
78
+ device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
79
+ view_img=False, # show results
80
+ save_txt=False, # save results to *.txt
81
+ save_format=0, # save boxes coordinates in YOLO format or Pascal-VOC format (0 for YOLO and 1 for Pascal-VOC)
82
+ save_csv=False, # save results in CSV format
83
+ save_conf=False, # save confidences in --save-txt labels
84
+ save_crop=False, # save cropped prediction boxes
85
+ nosave=False, # do not save images/videos
86
+ classes=None, # filter by class: --class 0, or --class 0 2 3
87
+ agnostic_nms=False, # class-agnostic NMS
88
+ augment=False, # augmented inference
89
+ visualize=False, # visualize features
90
+ update=False, # update all models
91
+ project=ROOT / "runs/detect", # save results to project/name
92
+ name="exp", # save results to project/name
93
+ exist_ok=False, # existing project/name ok, do not increment
94
+ line_thickness=3, # bounding box thickness (pixels)
95
+ hide_labels=False, # hide labels
96
+ hide_conf=False, # hide confidences
97
+ half=False, # use FP16 half-precision inference
98
+ dnn=False, # use OpenCV DNN for ONNX inference
99
+ vid_stride=1, # video frame-rate stride
100
+ ):
101
+
102
+ """
103
+ Runs YOLOv5 detection inference on various sources like images, videos, directories, streams, etc.
104
+
105
+ Args:
106
+ weights (str | Path): Path to the model weights file or a Triton URL. Default is 'yolov5s.pt'.
107
+ source (str | Path): Input source, which can be a file, directory, URL, glob pattern, screen capture, or webcam
108
+ index. Default is 'data/images'.
109
+ data (str | Path): Path to the dataset YAML file. Default is 'data/coco128.yaml'.
110
+ imgsz (tuple[int, int]): Inference image size as a tuple (height, width). Default is (640, 640).
111
+ conf_thres (float): Confidence threshold for detections. Default is 0.25.
112
+ iou_thres (float): Intersection Over Union (IOU) threshold for non-max suppression. Default is 0.45.
113
+ max_det (int): Maximum number of detections per image. Default is 1000.
114
+ device (str): CUDA device identifier (e.g., '0' or '0,1,2,3') or 'cpu'. Default is an empty string, which uses the
115
+ best available device.
116
+ view_img (bool): If True, display inference results using OpenCV. Default is False.
117
+ save_txt (bool): If True, save results in a text file. Default is False.
118
+ save_csv (bool): If True, save results in a CSV file. Default is False.
119
+ save_conf (bool): If True, include confidence scores in the saved results. Default is False.
120
+ save_crop (bool): If True, save cropped prediction boxes. Default is False.
121
+ nosave (bool): If True, do not save inference images or videos. Default is False.
122
+ classes (list[int]): List of class indices to filter detections by. Default is None.
123
+ agnostic_nms (bool): If True, perform class-agnostic non-max suppression. Default is False.
124
+ augment (bool): If True, use augmented inference. Default is False.
125
+ visualize (bool): If True, visualize feature maps. Default is False.
126
+ update (bool): If True, update all models' weights. Default is False.
127
+ project (str | Path): Directory to save results. Default is 'runs/detect'.
128
+ name (str): Name of the current experiment; used to create a subdirectory within 'project'. Default is 'exp'.
129
+ exist_ok (bool): If True, existing directories with the same name are reused instead of being incremented. Default is
130
+ False.
131
+ line_thickness (int): Thickness of bounding box lines in pixels. Default is 3.
132
+ hide_labels (bool): If True, do not display labels on bounding boxes. Default is False.
133
+ hide_conf (bool): If True, do not display confidence scores on bounding boxes. Default is False.
134
+ half (bool): If True, use FP16 half-precision inference. Default is False.
135
+ dnn (bool): If True, use OpenCV DNN backend for ONNX inference. Default is False.
136
+ vid_stride (int): Stride for processing video frames, to skip frames between processing. Default is 1.
137
+
138
+ Returns:
139
+ None
140
+
141
+ Examples:
142
+ ```python
143
+ from ultralytics import run
144
+
145
+ # Run inference on an image
146
+ run(source='data/images/example.jpg', weights='yolov5s.pt', device='0')
147
+
148
+ # Run inference on a video with specific confidence threshold
149
+ run(source='data/videos/example.mp4', weights='yolov5s.pt', conf_thres=0.4, device='0')
150
+ ```
151
+ """
152
+ source = str(source)
153
+ save_img = not nosave and not source.endswith(".txt") # save inference images
154
+ is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
155
+ is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
156
+ webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
157
+ screenshot = source.lower().startswith("screen")
158
+ if is_url and is_file:
159
+ source = check_file(source) # download
160
+
161
+ # Directories
162
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
163
+ (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
164
+
165
+ # Load model
166
+ device = select_device(device)
167
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
168
+ stride, names, pt = model.stride, model.names, model.pt
169
+ imgsz = check_img_size(imgsz, s=stride) # check image size
170
+
171
+ # Dataloader
172
+ bs = 1 # batch_size
173
+ if webcam:
174
+ view_img = check_imshow(warn=True)
175
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
176
+ bs = len(dataset)
177
+ elif screenshot:
178
+ dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
179
+ else:
180
+ dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
181
+ vid_path, vid_writer = [None] * bs, [None] * bs
182
+
183
+ # Run inference
184
+ model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
185
+ seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
186
+ for path, im, im0s, vid_cap, s in dataset:
187
+ with dt[0]:
188
+ im = torch.from_numpy(im).to(model.device)
189
+ im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
190
+ im /= 255 # 0 - 255 to 0.0 - 1.0
191
+ if len(im.shape) == 3:
192
+ im = im[None] # expand for batch dim
193
+ if model.xml and im.shape[0] > 1:
194
+ ims = torch.chunk(im, im.shape[0], 0)
195
+
196
+ # Inference
197
+ with dt[1]:
198
+ visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
199
+ if model.xml and im.shape[0] > 1:
200
+ pred = None
201
+ for image in ims:
202
+ if pred is None:
203
+ pred = model(image, augment=augment, visualize=visualize).unsqueeze(0)
204
+ else:
205
+ pred = torch.cat((pred, model(image, augment=augment, visualize=visualize).unsqueeze(0)), dim=0)
206
+ pred = [pred, None]
207
+ else:
208
+ pred = model(im, augment=augment, visualize=visualize)
209
+ # NMS
210
+ with dt[2]:
211
+ pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
212
+
213
+ # Second-stage classifier (optional)
214
+ # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
215
+
216
+ # Define the path for the CSV file
217
+ csv_path = save_dir / "predictions.csv"
218
+
219
+ # Create or append to the CSV file
220
+ def write_to_csv(image_name, prediction, confidence):
221
+ """Writes prediction data for an image to a CSV file, appending if the file exists."""
222
+ data = {"Image Name": image_name, "Prediction": prediction, "Confidence": confidence}
223
+ with open(csv_path, mode="a", newline="") as f:
224
+ writer = csv.DictWriter(f, fieldnames=data.keys())
225
+ if not csv_path.is_file():
226
+ writer.writeheader()
227
+ writer.writerow(data)
228
+
229
+ # Process predictions
230
+ for i, det in enumerate(pred): # per image
231
+ seen += 1
232
+ if webcam: # batch_size >= 1
233
+ p, im0, frame = path[i], im0s[i].copy(), dataset.count
234
+ s += f"{i}: "
235
+ else:
236
+ p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
237
+
238
+ p = Path(p) # to Path
239
+ save_path = str(save_dir / p.name) # im.jpg
240
+ txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt
241
+ s += "{:g}x{:g} ".format(*im.shape[2:]) # print string
242
+ gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
243
+ imc = im0.copy() if save_crop else im0 # for save_crop
244
+ annotator = Annotator(im0, line_width=line_thickness, example=str(names))
245
+ if len(det):
246
+ # Rescale boxes from img_size to im0 size
247
+ det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
248
+
249
+ # Print results
250
+ for c in det[:, 5].unique():
251
+ n = (det[:, 5] == c).sum() # detections per class
252
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
253
+
254
+ # Write results
255
+ for *xyxy, conf, cls in reversed(det):
256
+ c = int(cls) # integer class
257
+ label = names[c] if hide_conf else f"{names[c]}"
258
+ confidence = float(conf)
259
+ confidence_str = f"{confidence:.2f}"
260
+
261
+ if save_csv:
262
+ write_to_csv(p.name, label, confidence_str)
263
+
264
+ if save_txt: # Write to file
265
+ if save_format == 0:
266
+ coords = (
267
+ (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()
268
+ ) # normalized xywh
269
+ else:
270
+ coords = (torch.tensor(xyxy).view(1, 4) / gn).view(-1).tolist() # xyxy
271
+ line = (cls, *coords, conf) if save_conf else (cls, *coords) # label format
272
+ with open(f"{txt_path}.txt", "a") as f:
273
+ f.write(("%g " * len(line)).rstrip() % line + "\n")
274
+
275
+ if save_img or save_crop or view_img: # Add bbox to image
276
+ c = int(cls) # integer class
277
+ label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}")
278
+ annotator.box_label(xyxy, label, color=colors(c, True))
279
+ if save_crop:
280
+ save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True)
281
+
282
+ # Stream results
283
+ im0 = annotator.result()
284
+ if view_img:
285
+ if platform.system() == "Linux" and p not in windows:
286
+ windows.append(p)
287
+ cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
288
+ cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
289
+ cv2.imshow(str(p), im0)
290
+ cv2.waitKey(1) # 1 millisecond
291
+
292
+ # Save results (image with detections)
293
+ if save_img:
294
+ if dataset.mode == "image":
295
+ cv2.imwrite(save_path, im0)
296
+ else: # 'video' or 'stream'
297
+ if vid_path[i] != save_path: # new video
298
+ vid_path[i] = save_path
299
+ if isinstance(vid_writer[i], cv2.VideoWriter):
300
+ vid_writer[i].release() # release previous video writer
301
+ if vid_cap: # video
302
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
303
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
304
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
305
+ else: # stream
306
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
307
+ save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos
308
+ vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
309
+ vid_writer[i].write(im0)
310
+
311
+ # Print time (inference-only)
312
+ LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
313
+
314
+ # Print results
315
+ t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
316
+ LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
317
+ if save_txt or save_img:
318
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
319
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
320
+ if update:
321
+ strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
322
+
323
+
324
+ def parse_opt():
325
+ """
326
+ Parse command-line arguments for YOLOv5 detection, allowing custom inference options and model configurations.
327
+
328
+ Args:
329
+ --weights (str | list[str], optional): Model path or Triton URL. Defaults to ROOT / 'yolov5s.pt'.
330
+ --source (str, optional): File/dir/URL/glob/screen/0(webcam). Defaults to ROOT / 'data/images'.
331
+ --data (str, optional): Dataset YAML path. Provides dataset configuration information.
332
+ --imgsz (list[int], optional): Inference size (height, width). Defaults to [640].
333
+ --conf-thres (float, optional): Confidence threshold. Defaults to 0.25.
334
+ --iou-thres (float, optional): NMS IoU threshold. Defaults to 0.45.
335
+ --max-det (int, optional): Maximum number of detections per image. Defaults to 1000.
336
+ --device (str, optional): CUDA device, i.e., '0' or '0,1,2,3' or 'cpu'. Defaults to "".
337
+ --view-img (bool, optional): Flag to display results. Defaults to False.
338
+ --save-txt (bool, optional): Flag to save results to *.txt files. Defaults to False.
339
+ --save-csv (bool, optional): Flag to save results in CSV format. Defaults to False.
340
+ --save-conf (bool, optional): Flag to save confidences in labels saved via --save-txt. Defaults to False.
341
+ --save-crop (bool, optional): Flag to save cropped prediction boxes. Defaults to False.
342
+ --nosave (bool, optional): Flag to prevent saving images/videos. Defaults to False.
343
+ --classes (list[int], optional): List of classes to filter results by, e.g., '--classes 0 2 3'. Defaults to None.
344
+ --agnostic-nms (bool, optional): Flag for class-agnostic NMS. Defaults to False.
345
+ --augment (bool, optional): Flag for augmented inference. Defaults to False.
346
+ --visualize (bool, optional): Flag for visualizing features. Defaults to False.
347
+ --update (bool, optional): Flag to update all models in the model directory. Defaults to False.
348
+ --project (str, optional): Directory to save results. Defaults to ROOT / 'runs/detect'.
349
+ --name (str, optional): Sub-directory name for saving results within --project. Defaults to 'exp'.
350
+ --exist-ok (bool, optional): Flag to allow overwriting if the project/name already exists. Defaults to False.
351
+ --line-thickness (int, optional): Thickness (in pixels) of bounding boxes. Defaults to 3.
352
+ --hide-labels (bool, optional): Flag to hide labels in the output. Defaults to False.
353
+ --hide-conf (bool, optional): Flag to hide confidences in the output. Defaults to False.
354
+ --half (bool, optional): Flag to use FP16 half-precision inference. Defaults to False.
355
+ --dnn (bool, optional): Flag to use OpenCV DNN for ONNX inference. Defaults to False.
356
+ --vid-stride (int, optional): Video frame-rate stride, determining the number of frames to skip in between
357
+ consecutive frames. Defaults to 1.
358
+
359
+ Returns:
360
+ argparse.Namespace: Parsed command-line arguments as an argparse.Namespace object.
361
+
362
+ Example:
363
+ ```python
364
+ from ultralytics import YOLOv5
365
+ args = YOLOv5.parse_opt()
366
+ ```
367
+ """
368
+ parser = argparse.ArgumentParser()
369
+ parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path or triton URL")
370
+ parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
371
+ parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
372
+ parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
373
+ parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold")
374
+ parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold")
375
+ parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image")
376
+ parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
377
+ parser.add_argument("--view-img", action="store_true", help="show results")
378
+ parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
379
+ parser.add_argument(
380
+ "--save-format",
381
+ type=int,
382
+ default=0,
383
+ help="whether to save boxes coordinates in YOLO format or Pascal-VOC format when save-txt is True, 0 for YOLO and 1 for Pascal-VOC",
384
+ )
385
+ parser.add_argument("--save-csv", action="store_true", help="save results in CSV format")
386
+ parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
387
+ parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes")
388
+ parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
389
+ parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")
390
+ parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS")
391
+ parser.add_argument("--augment", action="store_true", help="augmented inference")
392
+ parser.add_argument("--visualize", action="store_true", help="visualize features")
393
+ parser.add_argument("--update", action="store_true", help="update all models")
394
+ parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name")
395
+ parser.add_argument("--name", default="exp", help="save results to project/name")
396
+ parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
397
+ parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)")
398
+ parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels")
399
+ parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences")
400
+ parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
401
+ parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
402
+ parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
403
+ opt = parser.parse_args()
404
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
405
+ print_args(vars(opt))
406
+ return opt
407
+
408
+
409
+ def main(opt):
410
+ """
411
+ Executes YOLOv5 model inference based on provided command-line arguments, validating dependencies before running.
412
+
413
+ Args:
414
+ opt (argparse.Namespace): Command-line arguments for YOLOv5 detection. See function `parse_opt` for details.
415
+
416
+ Returns:
417
+ None
418
+
419
+ Note:
420
+ This function performs essential pre-execution checks and initiates the YOLOv5 detection process based on user-specified
421
+ options. Refer to the usage guide and examples for more information about different sources and formats at:
422
+ https://github.com/ultralytics/ultralytics
423
+
424
+ Example usage:
425
+
426
+ ```python
427
+ if __name__ == "__main__":
428
+ opt = parse_opt()
429
+ main(opt)
430
+ ```
431
+ """
432
+ check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
433
+ run(**vars(opt))
434
+
435
+
436
+ if __name__ == "__main__":
437
+ opt = parse_opt()
438
+ main(opt)
requirements.txt ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 requirements
2
+ # Usage: pip install -r requirements.txt
3
+
4
+ # Base ------------------------------------------------------------------------
5
+ gitpython>=3.1.30
6
+ matplotlib>=3.3
7
+ numpy>=1.23.5
8
+ opencv-python>=4.1.1
9
+ pillow>=10.3.0
10
+ psutil # system resources
11
+ PyYAML>=5.3.1
12
+ requests>=2.32.2
13
+ scipy>=1.4.1
14
+ thop>=0.1.1 # FLOPs computation
15
+ torch>=1.8.0 # see https://pytorch.org/get-started/locally (recommended)
16
+ torchvision>=0.9.0
17
+ tqdm>=4.66.3
18
+ ultralytics>=8.2.34 # https://ultralytics.com
19
+ # protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012
20
+
21
+ # Logging ---------------------------------------------------------------------
22
+ # tensorboard>=2.4.1
23
+ # clearml>=1.2.0
24
+ # comet
25
+
26
+ # Plotting --------------------------------------------------------------------
27
+ pandas>=1.1.4
28
+ seaborn>=0.11.0
29
+
30
+ # Export ----------------------------------------------------------------------
31
+ # coremltools>=6.0 # CoreML export
32
+ # onnx>=1.10.0 # ONNX export
33
+ # onnx-simplifier>=0.4.1 # ONNX simplifier
34
+ # nvidia-pyindex # TensorRT export
35
+ # nvidia-tensorrt # TensorRT export
36
+ # scikit-learn<=1.1.2 # CoreML quantization
37
+ # tensorflow>=2.4.0,<=2.13.1 # TF exports (-cpu, -aarch64, -macos)
38
+ # tensorflowjs>=3.9.0 # TF.js export
39
+ # openvino-dev>=2023.0 # OpenVINO export
40
+
41
+ # Deploy ----------------------------------------------------------------------
42
+ setuptools>=70.0.0 # Snyk vulnerability fix
43
+ # tritonclient[all]~=2.24.0
44
+
45
+ # Extras ----------------------------------------------------------------------
46
+ # ipython # interactive notebook
47
+ # mss # screenshots
48
+ # albumentations>=1.0.3
49
+ # pycocotools>=2.0.6 # COCO mAP