File size: 2,035 Bytes
045bac5
 
 
e3016d1
 
 
 
 
 
045bac5
 
e3016d1
045bac5
e3016d1
045bac5
 
 
 
 
e3016d1
 
 
 
 
045bac5
 
 
 
 
e3016d1
 
 
 
 
045bac5
e3016d1
 
 
045bac5
e3016d1
045bac5
e3016d1
 
 
 
045bac5
e3016d1
 
 
 
 
 
 
045bac5
 
 
e3016d1
 
 
 
 
045bac5
 
 
 
 
 
 
e3016d1
 
 
 
045bac5
e3016d1
045bac5
 
 
e3016d1
 
 
045bac5
 
 
 
e3016d1
 
 
045bac5
 
 
e3016d1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
library_name: peft
pipeline_tag: text-generation
language: en
tags:
- deepseek
- text-generation
- conversational
---

# DeepSeek Chatbot

This is a fine-tuned version of DeepSeek-R1-Distill-Qwen-1.5B, optimized for conversational AI applications. The model maintains the base model's capabilities while being tuned for improved dialogue interactions.

## Model Details

### Model Description

- **Developed by:** Trinoid
- **Model type:** Conversational Language Model
- **Language(s):** English
- **License:** Same as base model (DeepSeek-R1-Distill-Qwen-1.5B)
- **Finetuned from model:** deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B

## Uses

### Direct Use

This model can be used for:
- General conversation
- Text generation
- Question answering
- Chat-based applications

Example usage:
```python
from huggingface_hub import InferenceClient

client = InferenceClient("Trinoid/Deepseek_Chatbot")

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Hello, how are you?"}
]

response = client.chat_completion(
    messages,
    max_tokens=512,
    temperature=0.7,
    top_p=0.95
)
```

### Out-of-Scope Use

This model should not be used for:
- Generation of harmful or malicious content
- Spreading misinformation
- Production of illegal content
- Making critical decisions without human oversight

## Training Details

### Training Procedure

#### Training Hyperparameters

- **Training regime:** fp16 mixed precision
- **Framework:** PEFT (Parameter-Efficient Fine-Tuning)
- **PEFT Method:** LoRA
- **Version:** PEFT 0.14.0

## Technical Specifications

### Model Architecture and Objective

- Base architecture: DeepSeek-R1-Distill-Qwen-1.5B
- Fine-tuning method: PEFT/LoRA
- Primary objective: Conversational AI

### Compute Infrastructure

#### Software
- PEFT 0.14.0
- Transformers
- Python 3.x

## Model Card Contact

For questions or issues about this model, please open an issue in the model repository.