File size: 7,604 Bytes
57e4662 d88bda8 57e4662 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
---
pipeline_tag: text-generation
inference: false
license: apache-2.0
library_name: transformers
tags:
- language
- granite-3.2
- llama-cpp
- gguf-my-repo
base_model: ibm-granite/granite-3.2-2b-instruct
---
# Triangle104/granite-3.2-2b-instruct-Q8_0-GGUF
This model was converted to GGUF format from [`ibm-granite/granite-3.2-2b-instruct`](https://huggingface.co/ibm-granite/granite-3.2-2b-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/ibm-granite/granite-3.2-2b-instruct) for more details on the model.
---
Model Summary:
-
Granite-3.2-2B-Instruct is an 2-billion-parameter, long-context AI model fine-tuned for thinking capabilities. Built on top of Granite-3.1-2B-Instruct,
it has been trained using a mix of permissively licensed open-source
datasets and internally generated synthetic data designed for reasoning
tasks. The model allows controllability of its thinking capability,
ensuring it is applied only when required.
Developers: Granite Team, IBM
Website: Granite Docs
Release Date: February 26th, 2025
License: Apache 2.0
Supported Languages:
-
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech,
Italian, Korean, Dutch, and Chinese. However, users may finetune this
Granite model for languages beyond these 12 languages.
Intended Use:
-
This model is designed to handle general instruction-following tasks and
can be integrated into AI assistants across various domains, including
business applications.
Capabilities
-
Thinking
Summarization
Text classification
Text extraction
Question-answering
Retrieval Augmented Generation (RAG)
Code related tasks
Function-calling tasks
Multilingual dialog use cases
Long-context tasks including long document/meeting summarization, long document QA, etc.
Generation:
-
This is a simple example of how to use Granite-3.2-2B-Instruct model.
Install the following libraries:
-
pip install torch torchvision torchaudio
pip install accelerate
pip install transformers
Then, copy the snippet from the section that is relevant for your use case.
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
import torch
model_path="ibm-granite/granite-3.2-2b-instruct"
device="cuda"
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map=device,
torch_dtype=torch.bfloat16,
)
tokenizer = AutoTokenizer.from_pretrained(
model_path
)
conv = [{"role": "user", "content":"You have 10 liters of a 30% acid solution. How many liters of a 70% acid solution must be added to achieve a 50% acid mixture?"}]
input_ids = tokenizer.apply_chat_template(conv, return_tensors="pt", thinking=True, return_dict=True, add_generation_prompt=True).to(device)
set_seed(42)
output = model.generate(
**input_ids,
max_new_tokens=8192,
)
prediction = tokenizer.decode(output[0, input_ids["input_ids"].shape[1]:], skip_special_tokens=True)
print(prediction)
Example Outputs
thinking=True
Here is my thought process:
1. First, let's understand the composition of the initial 10 liters of 30% acid solution:
- Acid content = 30% of 10 liters = 0.30 * 10 = 3 liters
2. We want to end up with a 50% acid solution. Let's denote the volume of the 70% acid solution to be added as 'x' liters.
3. The amount of acid in the final mixture (50% solution) should equal the initial acid content plus the acid from the added 70% solution.
- Total acid in final mixture = 0.50 * (10 + x)
4. The equation representing the total acid content is:
3 (from initial solution) + 0.70 * x (from added solution) = 0.50 * (10 + x)
5. Now, we solve for 'x':
3 + 0.70x = 5 + 0.50x
0.70x - 0.50x = 5 - 3
0.20x = 2
x = 2 / 0.20
x = 10 liters
6. Therefore, 10 liters of a 70% acid solution must be added to the initial 10 liters of 30% acid solution to achieve a 50% acid mixture.
Here is my response:
To solve this problem, we need to determine how much of a 70% acid solution must be added to a 10-liter solution that is already 30% acid to create a new mixture that is 50% acid. Here's how to calculate it:
1. **Initial Acid Content**:
- The initial 10-liter solution contains 3 liters of acid (since 30% of 10 liters).
2. **Desired Final Acid Content**:
- We want the final mixture to be 50% acid.
3. **Equation Setup**:
- Let 'x' be the volume (in liters) of the 70% acid solution to be added.
- The equation representing the total acid content in the final mixture (which is 10 liters from the initial solution plus 'x' liters of the added solution) should equal 50% of the total volume (10 + x).
- This gives us: 3 (acid from initial solution) + 0.70x (acid from added solution) = 0.50(10 + x)
4. **Solving the Equation**:
- First, simplify the right side of the equation: 0.50(10 + x) = 5 + 0.50x
- Now, the equation is: 3 + 0.70x = 5 + 0.50x
- Subtract 0.50x from both sides: 0.20x = 2
- Divide both sides by 0.20: x = 2 / 0.20
- x = 10 liters
5. **Conclusion**:
- To achieve a 50% acid mixture from the initial 30% solution, you need to add 10 liters of a 70% acid solution.
So, the final answer is that 10 liters of a 70% acid solution must be added to the initial 10 liters of 30% acid solution.
thinking=False
To solve this problem, we'll use the concept of volume and concentration. Let's denote the amount of 70% acid solution we need to add as "x" liters.
First, let's find out how much acid is in the initial 10-liter solution:
Acid in initial solution = 30% of 10 liters = 0.30 * 10 = 3 liters
Now, we want to end up with a 50% acid solution in a total volume of (10 + x) liters. Let's denote the final volume as V.
Final acid concentration = 50%
Final acid amount = 50% of V = 0.50 * V
We know the initial acid amount and the final acid amount, so we can set up an equation:
Initial acid amount + Acid from added solution = Final acid amount
3 liters + (70% of x) = 0.50 * (10 + x)
Now, let's solve for x:
0.70x + 3 = 0.50 * 10 + 0.50x
0.70x - 0.50x = 0.50 * 10 - 3
0.20x = 5 - 3
0.20x = 2
x = 2 / 0.20
x = 10 liters
So, you need to add 10 liters of a 70% acid solution to the initial 10-liter 30% acid solution to achieve a 50% acid mixture.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/granite-3.2-2b-instruct-Q8_0-GGUF --hf-file granite-3.2-2b-instruct-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/granite-3.2-2b-instruct-Q8_0-GGUF --hf-file granite-3.2-2b-instruct-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/granite-3.2-2b-instruct-Q8_0-GGUF --hf-file granite-3.2-2b-instruct-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/granite-3.2-2b-instruct-Q8_0-GGUF --hf-file granite-3.2-2b-instruct-q8_0.gguf -c 2048
```
|