Triangle104 commited on
Commit
247ad22
·
verified ·
1 Parent(s): 1b1bbfb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +110 -0
README.md CHANGED
@@ -117,6 +117,116 @@ model-index:
117
  This model was converted to GGUF format from [`prithivMLmods/Primal-Opus-14B-Optimus-v2`](https://huggingface.co/prithivMLmods/Primal-Opus-14B-Optimus-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
118
  Refer to the [original model card](https://huggingface.co/prithivMLmods/Primal-Opus-14B-Optimus-v2) for more details on the model.
119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
  ## Use with llama.cpp
121
  Install llama.cpp through brew (works on Mac and Linux)
122
 
 
117
  This model was converted to GGUF format from [`prithivMLmods/Primal-Opus-14B-Optimus-v2`](https://huggingface.co/prithivMLmods/Primal-Opus-14B-Optimus-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
118
  Refer to the [original model card](https://huggingface.co/prithivMLmods/Primal-Opus-14B-Optimus-v2) for more details on the model.
119
 
120
+ ---
121
+ Primal-Opus-14B-Optimus-v2 is based on the Qwen 2.5 14B modality
122
+ architecture, designed to enhance the reasoning capabilities of
123
+ 14B-parameter models. It has been fine-tuned on a synthetic dataset based on DeepSeek R1,
124
+ further optimizing its chain-of-thought (CoT) reasoning and logical
125
+ problem-solving abilities. The model demonstrates significant
126
+ improvements in context understanding, structured data processing, and
127
+ long-context comprehension, making it ideal for complex reasoning tasks,
128
+ instruction-following, and text generation.
129
+
130
+
131
+
132
+
133
+
134
+
135
+
136
+ Key Improvements
137
+ -
138
+
139
+
140
+
141
+ Enhanced Reasoning and Logic: Improved multi-step logical deduction, mathematical reasoning, and problem-solving accuracy.
142
+ Fine-Tuned Instruction Following: Optimized for precise responses, structured outputs (e.g., JSON), and generating long texts (8K+ tokens).
143
+ Greater Adaptability: Better role-playing capabilities and resilience to diverse system prompts.
144
+ Long-Context Support: Handles up to 128K tokens and generates up to 8K tokens per output.
145
+ Multilingual Proficiency: Supports over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, and more.
146
+
147
+
148
+
149
+
150
+
151
+
152
+
153
+ Quickstart with Transformers
154
+ -
155
+
156
+
157
+
158
+ from transformers import AutoModelForCausalLM, AutoTokenizer
159
+
160
+ model_name = "prithivMLmods/Primal-Opus-14B-Optimus-v2"
161
+
162
+ model = AutoModelForCausalLM.from_pretrained(
163
+ model_name,
164
+ torch_dtype="auto",
165
+ device_map="auto",
166
+ trust_remote_code=True
167
+ )
168
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
169
+
170
+ prompt = "Give me a short introduction to large language models."
171
+ messages = [
172
+ {"role": "system", "content": "You are an advanced AI assistant with expert-level reasoning and knowledge."},
173
+ {"role": "user", "content": prompt}
174
+ ]
175
+ text = tokenizer.apply_chat_template(
176
+ messages,
177
+ tokenize=False,
178
+ add_generation_prompt=True
179
+ )
180
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
181
+
182
+ generated_ids = model.generate(
183
+ **model_inputs,
184
+ max_new_tokens=512
185
+ )
186
+ generated_ids = [
187
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
188
+ ]
189
+
190
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
191
+ print(response)
192
+
193
+
194
+
195
+
196
+
197
+
198
+
199
+
200
+ Intended Use
201
+ -
202
+
203
+
204
+
205
+ Advanced Logical Reasoning: Designed for logical deduction, multi-step problem-solving, and knowledge-based tasks.
206
+ Mathematical & Scientific Problem-Solving: Enhanced capabilities for calculations, theorem proving, and scientific queries.
207
+ Code Generation & Debugging: Generates and optimizes code across multiple programming languages.
208
+ Structured Data Analysis: Processes tables, JSON, and structured outputs, making it ideal for data-centric tasks.
209
+ Multilingual Applications: High proficiency in over 29 languages, enabling global-scale applications.
210
+ Extended Content Generation: Supports detailed document writing, research reports, and instructional guides.
211
+
212
+
213
+
214
+
215
+
216
+
217
+
218
+ Limitations
219
+ -
220
+
221
+
222
+
223
+ High Computational Requirements: Due to its 14B parameters and 128K context support, it requires powerful GPUs or TPUs for efficient inference.
224
+ Language-Specific Variability: Performance may vary across supported languages, especially for low-resource languages.
225
+ Potential Error Accumulation: Long-text generation can sometimes introduce inconsistencies over extended outputs.
226
+ Limited Real-World Awareness: Knowledge is restricted to training data and may not reflect recent world events.
227
+ Prompt Sensitivity: Outputs can depend on the specificity and clarity of the input prompt.
228
+
229
+ ---
230
  ## Use with llama.cpp
231
  Install llama.cpp through brew (works on Mac and Linux)
232