File size: 8,389 Bytes
29d6b4c 046ccad 29d6b4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
---
license: apache-2.0
language:
- en
- zh
base_model: prithivMLmods/Primal-Opus-14B-Optimus-v2
pipeline_tag: text-generation
library_name: transformers
tags:
- text-generation-inference
- trl
- sft
- llama-cpp
- gguf-my-repo
model-index:
- name: Primal-Opus-14B-Optimus-v2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 64.04
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 50.18
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 42.07
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 18.9
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 21.15
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.14
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2
name: Open LLM Leaderboard
---
# Triangle104/Primal-Opus-14B-Optimus-v2-Q4_K_S-GGUF
This model was converted to GGUF format from [`prithivMLmods/Primal-Opus-14B-Optimus-v2`](https://huggingface.co/prithivMLmods/Primal-Opus-14B-Optimus-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/prithivMLmods/Primal-Opus-14B-Optimus-v2) for more details on the model.
---
Primal-Opus-14B-Optimus-v2 is based on the Qwen 2.5 14B modality
architecture, designed to enhance the reasoning capabilities of
14B-parameter models. It has been fine-tuned on a synthetic dataset based on DeepSeek R1,
further optimizing its chain-of-thought (CoT) reasoning and logical
problem-solving abilities. The model demonstrates significant
improvements in context understanding, structured data processing, and
long-context comprehension, making it ideal for complex reasoning tasks,
instruction-following, and text generation.
Key Improvements
-
Enhanced Reasoning and Logic: Improved multi-step logical deduction, mathematical reasoning, and problem-solving accuracy.
Fine-Tuned Instruction Following: Optimized for precise responses, structured outputs (e.g., JSON), and generating long texts (8K+ tokens).
Greater Adaptability: Better role-playing capabilities and resilience to diverse system prompts.
Long-Context Support: Handles up to 128K tokens and generates up to 8K tokens per output.
Multilingual Proficiency: Supports over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, and more.
Quickstart with Transformers
-
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "prithivMLmods/Primal-Opus-14B-Optimus-v2"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language models."
messages = [
{"role": "system", "content": "You are an advanced AI assistant with expert-level reasoning and knowledge."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
Intended Use
-
Advanced Logical Reasoning: Designed for logical deduction, multi-step problem-solving, and knowledge-based tasks.
Mathematical & Scientific Problem-Solving: Enhanced capabilities for calculations, theorem proving, and scientific queries.
Code Generation & Debugging: Generates and optimizes code across multiple programming languages.
Structured Data Analysis: Processes tables, JSON, and structured outputs, making it ideal for data-centric tasks.
Multilingual Applications: High proficiency in over 29 languages, enabling global-scale applications.
Extended Content Generation: Supports detailed document writing, research reports, and instructional guides.
Limitations
-
High Computational Requirements: Due to its 14B parameters and 128K context support, it requires powerful GPUs or TPUs for efficient inference.
Language-Specific Variability: Performance may vary across supported languages, especially for low-resource languages.
Potential Error Accumulation: Long-text generation can sometimes introduce inconsistencies over extended outputs.
Limited Real-World Awareness: Knowledge is restricted to training data and may not reflect recent world events.
Prompt Sensitivity: Outputs can depend on the specificity and clarity of the input prompt.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Primal-Opus-14B-Optimus-v2-Q4_K_S-GGUF --hf-file primal-opus-14b-optimus-v2-q4_k_s.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Primal-Opus-14B-Optimus-v2-Q4_K_S-GGUF --hf-file primal-opus-14b-optimus-v2-q4_k_s.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Primal-Opus-14B-Optimus-v2-Q4_K_S-GGUF --hf-file primal-opus-14b-optimus-v2-q4_k_s.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Primal-Opus-14B-Optimus-v2-Q4_K_S-GGUF --hf-file primal-opus-14b-optimus-v2-q4_k_s.gguf -c 2048
```
|