File size: 8,389 Bytes
29d6b4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
046ccad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29d6b4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
---
license: apache-2.0
language:
- en
- zh
base_model: prithivMLmods/Primal-Opus-14B-Optimus-v2
pipeline_tag: text-generation
library_name: transformers
tags:
- text-generation-inference
- trl
- sft
- llama-cpp
- gguf-my-repo
model-index:
- name: Primal-Opus-14B-Optimus-v2
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: wis-k/instruction-following-eval
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 64.04
      name: averaged accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: SaylorTwift/bbh
      split: test
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 50.18
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: lighteval/MATH-Hard
      split: test
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 42.07
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 18.9
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 21.15
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 49.14
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2
      name: Open LLM Leaderboard
---

# Triangle104/Primal-Opus-14B-Optimus-v2-Q4_K_S-GGUF
This model was converted to GGUF format from [`prithivMLmods/Primal-Opus-14B-Optimus-v2`](https://huggingface.co/prithivMLmods/Primal-Opus-14B-Optimus-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/prithivMLmods/Primal-Opus-14B-Optimus-v2) for more details on the model.

---
Primal-Opus-14B-Optimus-v2 is based on the Qwen 2.5 14B modality 
architecture, designed to enhance the reasoning capabilities of 
14B-parameter models. It has been fine-tuned on a synthetic dataset based on DeepSeek R1,
 further optimizing its chain-of-thought (CoT) reasoning and logical 
problem-solving abilities. The model demonstrates significant 
improvements in context understanding, structured data processing, and 
long-context comprehension, making it ideal for complex reasoning tasks,
 instruction-following, and text generation.  



	
		
	

Key Improvements
-



Enhanced Reasoning and Logic: Improved multi-step logical deduction, mathematical reasoning, and problem-solving accuracy.  
Fine-Tuned Instruction Following: Optimized for precise responses, structured outputs (e.g., JSON), and generating long texts (8K+ tokens).  
Greater Adaptability: Better role-playing capabilities and resilience to diverse system prompts.  
Long-Context Support: Handles up to 128K tokens and generates up to 8K tokens per output.  
Multilingual Proficiency: Supports over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, and more.



	
		
	

Quickstart with Transformers
-



from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "prithivMLmods/Primal-Opus-14B-Optimus-v2"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto",
    trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Give me a short introduction to large language models."
messages = [
    {"role": "system", "content": "You are an advanced AI assistant with expert-level reasoning and knowledge."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)




	
		
	

Intended Use
-



Advanced Logical Reasoning: Designed for logical deduction, multi-step problem-solving, and knowledge-based tasks.  
Mathematical & Scientific Problem-Solving: Enhanced capabilities for calculations, theorem proving, and scientific queries.  
Code Generation & Debugging: Generates and optimizes code across multiple programming languages.  
Structured Data Analysis: Processes tables, JSON, and structured outputs, making it ideal for data-centric tasks.  
Multilingual Applications: High proficiency in over 29 languages, enabling global-scale applications.  
Extended Content Generation: Supports detailed document writing, research reports, and instructional guides.



	
		
	

Limitations
-



High Computational Requirements: Due to its 14B parameters and 128K context support, it requires powerful GPUs or TPUs for efficient inference.  
Language-Specific Variability: Performance may vary across supported languages, especially for low-resource languages.  
Potential Error Accumulation: Long-text generation can sometimes introduce inconsistencies over extended outputs.  
Limited Real-World Awareness: Knowledge is restricted to training data and may not reflect recent world events.  
Prompt Sensitivity: Outputs can depend on the specificity and clarity of the input prompt.

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Primal-Opus-14B-Optimus-v2-Q4_K_S-GGUF --hf-file primal-opus-14b-optimus-v2-q4_k_s.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Primal-Opus-14B-Optimus-v2-Q4_K_S-GGUF --hf-file primal-opus-14b-optimus-v2-q4_k_s.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Primal-Opus-14B-Optimus-v2-Q4_K_S-GGUF --hf-file primal-opus-14b-optimus-v2-q4_k_s.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Primal-Opus-14B-Optimus-v2-Q4_K_S-GGUF --hf-file primal-opus-14b-optimus-v2-q4_k_s.gguf -c 2048
```