--- library_name: transformers license: apache-2.0 datasets: - nbeerbower/GreatFirewall-DPO - nbeerbower/Schule-DPO - nbeerbower/Purpura-DPO - nbeerbower/Arkhaios-DPO - jondurbin/truthy-dpo-v0.1 - antiven0m/physical-reasoning-dpo - flammenai/Date-DPO-NoAsterisks - flammenai/Prude-Phi3-DPO - Atsunori/HelpSteer2-DPO - jondurbin/gutenberg-dpo-v0.1 - nbeerbower/gutenberg2-dpo - nbeerbower/gutenberg-moderne-dpo base_model: nbeerbower/Dumpling-Qwen2.5-1.5B-v2 tags: - llama-cpp - gguf-my-repo --- # Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q5_K_M-GGUF This model was converted to GGUF format from [`nbeerbower/Dumpling-Qwen2.5-1.5B-v2`](https://huggingface.co/nbeerbower/Dumpling-Qwen2.5-1.5B-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nbeerbower/Dumpling-Qwen2.5-1.5B-v2) for more details on the model. --- nbeerbower/EVA-abliterated-TIES-Qwen2.5-1.5B finetuned on: nbeerbower/GreatFirewall-DPO nbeerbower/Schule-DPO nbeerbower/Purpura-DPO nbeerbower/Arkhaios-DPO jondurbin/truthy-dpo-v0.1 antiven0m/physical-reasoning-dpo flammenai/Date-DPO-NoAsterisks flammenai/Prude-Phi3-DPO Atsunori/HelpSteer2-DPO (1,000 samples) jondurbin/gutenberg-dpo-v0.1 nbeerbower/gutenberg2-dpo nbeerbower/gutenberg-moderne-dpo. Method QLoRA ORPO tune with 2x RTX 3090 for 2 epochs. # QLoRA config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch_dtype, bnb_4bit_use_double_quant=True, ) # LoRA config peft_config = LoraConfig( r=64, lora_alpha=64, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['up_proj', 'down_proj', 'gate_proj', 'k_proj', 'q_proj', 'v_proj', 'o_proj'] ) # Training config orpo_args = ORPOConfig( run_name=new_model, learning_rate=2e-5, lr_scheduler_type="linear", max_length=2048, max_prompt_length=1024, max_completion_length=1024, beta=0.1, per_device_train_batch_size=1, per_device_eval_batch_size=1, gradient_accumulation_steps=8, optim="paged_adamw_8bit", num_train_epochs=2, evaluation_strategy="steps", eval_steps=0.2, logging_steps=1, warmup_steps=10, max_grad_norm=10, report_to="wandb", output_dir="./results/", bf16=True, ) --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q5_K_M-GGUF --hf-file dumpling-qwen2.5-1.5b-v2-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q5_K_M-GGUF --hf-file dumpling-qwen2.5-1.5b-v2-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q5_K_M-GGUF --hf-file dumpling-qwen2.5-1.5b-v2-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q5_K_M-GGUF --hf-file dumpling-qwen2.5-1.5b-v2-q5_k_m.gguf -c 2048 ```