--- library_name: peft tags: - parquet - text-classification datasets: - tweet_eval metrics: - accuracy base_model: anvay/finetuning-cardiffnlp-sentiment-model model-index: - name: anvay_finetuning-cardiffnlp-sentiment-model-finetuned-lora-tweet_eval_emotion results: - task: type: text-classification name: Text Classification dataset: name: tweet_eval type: tweet_eval config: emotion split: validation args: emotion metrics: - type: accuracy value: 0.8155080213903744 name: accuracy --- # anvay_finetuning-cardiffnlp-sentiment-model-finetuned-lora-tweet_eval_emotion This model is a fine-tuned version of [anvay/finetuning-cardiffnlp-sentiment-model](https://huggingface.co/anvay/finetuning-cardiffnlp-sentiment-model) on the tweet_eval dataset. It achieves the following results on the evaluation set: - accuracy: 0.8155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | accuracy | train_loss | epoch | |:--------:|:----------:|:-----:| | 0.4465 | None | 0 | | 0.7647 | 0.7515 | 0 | | 0.7968 | 0.5965 | 1 | | 0.8182 | 0.5342 | 2 | | 0.8155 | 0.5080 | 3 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.16.1 - Tokenizers 0.15.2