Upload modle
Browse files- config.json +27 -0
- model.safetensors +3 -0
- pretraining_pl_DDP_v5.py +213 -0
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ViTMAEForPreTraining"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.0,
|
6 |
+
"decoder_hidden_size": 512,
|
7 |
+
"decoder_intermediate_size": 1024,
|
8 |
+
"decoder_num_attention_heads": 16,
|
9 |
+
"decoder_num_hidden_layers": 8,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.0,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"image_size": 112,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-12,
|
17 |
+
"mask_ratio": 0.75,
|
18 |
+
"model_type": "vit_mae",
|
19 |
+
"norm_pix_loss": false,
|
20 |
+
"num_attention_heads": 12,
|
21 |
+
"num_channels": 1,
|
22 |
+
"num_hidden_layers": 12,
|
23 |
+
"patch_size": 8,
|
24 |
+
"qkv_bias": true,
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.41.2"
|
27 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13d8f408d176af86d658b98d009de423978dc6969adb5e63f5447ee8c99982db
|
3 |
+
size 410476120
|
pretraining_pl_DDP_v5.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import h5py
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import random
|
6 |
+
import numpy as np
|
7 |
+
import os
|
8 |
+
import shutil
|
9 |
+
import pandas as pd
|
10 |
+
from torchvision import transforms
|
11 |
+
from PIL import Image
|
12 |
+
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler, Subset, random_split
|
13 |
+
import torch.optim as optim
|
14 |
+
import time
|
15 |
+
from tqdm import tqdm
|
16 |
+
from torch.optim import lr_scheduler
|
17 |
+
from transformers import ViTFeatureExtractor, AutoImageProcessor, ViTMAEConfig, ViTMAEModel, ViTMAEForPreTraining
|
18 |
+
from torchvision.datasets import ImageFolder
|
19 |
+
import lightning.pytorch as pl
|
20 |
+
from lightning.pytorch import Trainer
|
21 |
+
from lightning.pytorch.callbacks import ModelCheckpoint, LearningRateMonitor, RichProgressBar
|
22 |
+
from lightning.pytorch.loggers import TensorBoardLogger
|
23 |
+
from lightning.pytorch.callbacks import RichProgressBar
|
24 |
+
from lightning.pytorch.callbacks import TQDMProgressBar
|
25 |
+
from lightning.pytorch.utilities import rank_zero_only
|
26 |
+
|
27 |
+
DEVICE_NUM = torch.cuda.device_count()
|
28 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join([str(i) for i in range(DEVICE_NUM)])
|
29 |
+
|
30 |
+
SEED = 42
|
31 |
+
DATA_DIR = "../../0.data/pretrain_nucleus_image_all_16M.hdf5"
|
32 |
+
BATCH_SIZE = 400 *2
|
33 |
+
NUM_EPOCHS = 70
|
34 |
+
LEARNINGRATE = 0.0001
|
35 |
+
PROJECT_NAME = 'Nuspire_Pretraining_V5'
|
36 |
+
|
37 |
+
transform = transforms.Compose([
|
38 |
+
transforms.Grayscale(),
|
39 |
+
transforms.RandomResizedCrop((112, 112), scale=(0.5625, 1.0), ratio=(0.75, 1.33)),
|
40 |
+
transforms.RandomHorizontalFlip(p=0.5),
|
41 |
+
transforms.RandomVerticalFlip(p=0.5),
|
42 |
+
transforms.ToTensor(),
|
43 |
+
transforms.Normalize(mean=[0.21869252622127533], std=[0.1809280514717102])
|
44 |
+
])
|
45 |
+
|
46 |
+
configuration = ViTMAEConfig(
|
47 |
+
hidden_size=768,
|
48 |
+
num_hidden_layers=12,
|
49 |
+
num_attention_heads=12,
|
50 |
+
intermediate_size=3072,
|
51 |
+
hidden_act="gelu",
|
52 |
+
hidden_dropout_prob=0.0,
|
53 |
+
attention_probs_dropout_prob=0.0,
|
54 |
+
initializer_range=0.02,
|
55 |
+
layer_norm_eps=1e-12,
|
56 |
+
image_size=112,
|
57 |
+
patch_size=8,
|
58 |
+
num_channels=1,
|
59 |
+
qkv_bias=True,
|
60 |
+
decoder_num_attention_heads=16,
|
61 |
+
decoder_hidden_size=512,
|
62 |
+
decoder_num_hidden_layers=8,
|
63 |
+
decoder_intermediate_size=1024,
|
64 |
+
mask_ratio=0.75,
|
65 |
+
norm_pix_loss=False
|
66 |
+
)
|
67 |
+
|
68 |
+
class HDF5Dataset(Dataset):
|
69 |
+
def __init__(self, hdf5_path, transform=None):
|
70 |
+
self.hdf5_path = hdf5_path
|
71 |
+
self.transform = transform
|
72 |
+
self.hdf5_file = h5py.File(hdf5_path, 'r', rdcc_nbytes=10*1024**3, rdcc_w0=0.0, rdcc_nslots=10007)
|
73 |
+
self.images = self.hdf5_file['images']
|
74 |
+
|
75 |
+
def __len__(self):
|
76 |
+
return len(self.images)
|
77 |
+
|
78 |
+
def __getitem__(self, idx):
|
79 |
+
img = self.images[idx]
|
80 |
+
|
81 |
+
if self.transform:
|
82 |
+
img = Image.fromarray(img)
|
83 |
+
img = self.transform(img)
|
84 |
+
|
85 |
+
return img
|
86 |
+
|
87 |
+
def __del__(self):
|
88 |
+
self.hdf5_file.close()
|
89 |
+
|
90 |
+
class NucleusDataModule(pl.LightningDataModule):
|
91 |
+
def __init__(self, dataset, batch_size):
|
92 |
+
super().__init__()
|
93 |
+
self.dataset = dataset
|
94 |
+
self.batch_size = batch_size
|
95 |
+
|
96 |
+
def setup(self, stage=None):
|
97 |
+
|
98 |
+
train_size = int(0.8 * len(self.dataset))
|
99 |
+
test_size = len(self.dataset) - train_size
|
100 |
+
self.train_dataset, self.test_dataset = random_split(self.dataset, [train_size, test_size])
|
101 |
+
|
102 |
+
def train_dataloader(self):
|
103 |
+
return DataLoader(self.train_dataset, batch_size=self.batch_size, num_workers=16, pin_memory=True, prefetch_factor=5)
|
104 |
+
|
105 |
+
def val_dataloader(self):
|
106 |
+
return DataLoader(self.test_dataset, batch_size=self.batch_size * 3, num_workers=16, pin_memory=True, prefetch_factor=5)
|
107 |
+
|
108 |
+
class ViTMAEPreTraining(pl.LightningModule):
|
109 |
+
def __init__(self, configuration):
|
110 |
+
super().__init__()
|
111 |
+
self.model = ViTMAEForPreTraining(configuration)
|
112 |
+
self.save_hyperparameters()
|
113 |
+
|
114 |
+
def forward(self, x):
|
115 |
+
return self.model(x)
|
116 |
+
|
117 |
+
def training_step(self, batch, batch_idx):
|
118 |
+
x = batch
|
119 |
+
x = x.to(self.device)
|
120 |
+
outputs = self.model(x)
|
121 |
+
loss = outputs.loss
|
122 |
+
self.log('train_loss', loss, on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True)
|
123 |
+
return loss
|
124 |
+
|
125 |
+
|
126 |
+
def validation_step(self, batch, batch_idx):
|
127 |
+
x = batch
|
128 |
+
x = x.to(self.device)
|
129 |
+
outputs = self.model(x)
|
130 |
+
loss = outputs.loss
|
131 |
+
self.log('val_loss', loss, on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True)
|
132 |
+
return loss
|
133 |
+
|
134 |
+
def configure_optimizers(self):
|
135 |
+
optimizer = torch.optim.AdamW(self.model.parameters(), lr=LEARNINGRATE)
|
136 |
+
warmup_epochs = 10
|
137 |
+
warmup_factor = lambda epoch: epoch / warmup_epochs if epoch < warmup_epochs else 1
|
138 |
+
scheduler_warmup = torch.optim.lr_scheduler.LambdaLR(optimizer, warmup_factor)
|
139 |
+
scheduler_regular = torch.optim.lr_scheduler.StepLR(optimizer, 20, gamma=0.5)
|
140 |
+
scheduler = {
|
141 |
+
'scheduler': torch.optim.lr_scheduler.SequentialLR(optimizer, schedulers=[scheduler_warmup, scheduler_regular], milestones=[warmup_epochs]),
|
142 |
+
'interval': 'epoch',
|
143 |
+
'frequency': 1
|
144 |
+
}
|
145 |
+
return [optimizer], [scheduler]
|
146 |
+
|
147 |
+
class EpochLoggingCallback(pl.Callback):
|
148 |
+
def __init__(self):
|
149 |
+
super().__init__()
|
150 |
+
|
151 |
+
@rank_zero_only
|
152 |
+
def on_validation_epoch_end(self, trainer, pl_module):
|
153 |
+
train_loss = trainer.callback_metrics.get('train_loss')
|
154 |
+
val_loss = trainer.callback_metrics.get('val_loss')
|
155 |
+
if train_loss is not None and val_loss is not None:
|
156 |
+
trainer.logger.experiment.add_scalars(
|
157 |
+
"Epoch/Loss",
|
158 |
+
{'Train Loss': train_loss, 'Validation Loss': val_loss},
|
159 |
+
trainer.current_epoch
|
160 |
+
)
|
161 |
+
|
162 |
+
class SaveEpochModelCallback(pl.Callback):
|
163 |
+
def __init__(self):
|
164 |
+
super().__init__()
|
165 |
+
|
166 |
+
@rank_zero_only
|
167 |
+
def on_validation_epoch_end(self, trainer, pl_module):
|
168 |
+
path = trainer.checkpoint_callback.dirpath
|
169 |
+
epoch = trainer.current_epoch
|
170 |
+
pl_module.model.save_pretrained(f'{path}/epoch{epoch}')
|
171 |
+
|
172 |
+
dataset = HDF5Dataset(hdf5_path=DATA_DIR, transform=transform)
|
173 |
+
|
174 |
+
data_module = NucleusDataModule(dataset, BATCH_SIZE)
|
175 |
+
|
176 |
+
epoch_logging_callback = EpochLoggingCallback()
|
177 |
+
|
178 |
+
save_epoch_model_callback = SaveEpochModelCallback()
|
179 |
+
|
180 |
+
progress_bar = RichProgressBar()
|
181 |
+
|
182 |
+
logger = TensorBoardLogger(save_dir=f'./{PROJECT_NAME}_outputs', name="tensorboard")
|
183 |
+
|
184 |
+
best_model_callback = ModelCheckpoint(
|
185 |
+
dirpath=f'./{PROJECT_NAME}_outputs/model',
|
186 |
+
filename='{epoch:02d}-{val_loss:.2f}',
|
187 |
+
save_top_k=3,
|
188 |
+
mode='min',
|
189 |
+
monitor='val_loss'
|
190 |
+
)
|
191 |
+
|
192 |
+
lr_monitor = LearningRateMonitor(logging_interval='epoch')
|
193 |
+
|
194 |
+
trainer = Trainer(
|
195 |
+
max_epochs=NUM_EPOCHS,
|
196 |
+
devices=DEVICE_NUM, # 设置使用的设备数量
|
197 |
+
accelerator='gpu', # 指定使用GPU
|
198 |
+
strategy='ddp',
|
199 |
+
logger=logger,
|
200 |
+
callbacks=[lr_monitor,
|
201 |
+
progress_bar,
|
202 |
+
epoch_logging_callback,
|
203 |
+
save_epoch_model_callback,
|
204 |
+
best_model_callback]
|
205 |
+
)
|
206 |
+
|
207 |
+
# 设置随机种子
|
208 |
+
pl.seed_everything(SEED, workers=True)
|
209 |
+
|
210 |
+
model = ViTMAEPreTraining(configuration,)
|
211 |
+
trainer.fit(model, data_module)
|
212 |
+
|
213 |
+
|