Commit
·
a0c027d
1
Parent(s):
690b8a6
Upload README.md
Browse files
README.md
CHANGED
@@ -35,14 +35,14 @@ widget:
|
|
35 |
example_tite: "Unlabeled 6"
|
36 |
---
|
37 |
|
38 |
-
# WRAP -- A
|
39 |
|
40 |
Introducing WRAP, an advanced classification model built upon `AutoModelForSequenceClassification`, designed to identify tweets belonging to four
|
41 |
distinct classes: Reason, Statement, Notification, and None of the [TACO dataset](https://anonymous.4open.science/r/TACO).
|
42 |
Designed specifically for extracting information and inferences from Twitter data, this specialized classification model utilizes
|
43 |
[WRAPresentations](https://huggingface.co/TomatenMarc/WRAPresentations), from which WRAP acquires its name.
|
44 |
-
WRAPresentations is an advancement of the [BERTweet-base](https://huggingface.co/vinai/bertweet-base) architecture, whose
|
45 |
-
extended on augmented tweets using contrastive learning.
|
46 |
|
47 |
## Class Semantics
|
48 |
|
@@ -63,7 +63,7 @@ or quotation, and thus reveals the author’s motivation *to try to understand a
|
|
63 |
In its entirety, WRAP can classify the following hierarchy for tweets:
|
64 |
|
65 |
<div align="center">
|
66 |
-
<img src="https://github.com/TomatenMarc/public-images/raw/main/
|
67 |
</div>
|
68 |
|
69 |
## Usage
|
@@ -85,7 +85,7 @@ prediction = pipe("Huggingface is awesome")
|
|
85 |
print(prediction)
|
86 |
```
|
87 |
|
88 |
-
<a href="https://
|
89 |
<blockquote style="border-left: 5px solid grey; background-color: #f0f5ff; padding: 10px;">
|
90 |
Notice: The tweets need to undergo preprocessing before classification.
|
91 |
</blockquote>
|
@@ -113,7 +113,7 @@ Additionally, the category and class distribution of the dataset TACO is as foll
|
|
113 |
|
114 |
<p>
|
115 |
<blockquote style="border-left: 5px solid grey; background-color: #f0f5ff; padding: 10px;">
|
116 |
-
Notice: Our training involved WRAP to forecast class predictions, where the categories (
|
117 |
based on the inference or information component.
|
118 |
</blockquote>
|
119 |
<p>
|
@@ -161,7 +161,7 @@ In total, the WRAP classifier performs as follows:
|
|
161 |
| Macro-F1 | Inference | Information | Multiclass |
|
162 |
|-------------|-----------|-------------|------------|
|
163 |
| In-Topic | 87.71% | 85.34% | 75.80% |
|
164 |
-
| Cross-Topic | 86.71% | 84.
|
165 |
|
166 |
### Classification
|
167 |
|
|
|
35 |
example_tite: "Unlabeled 6"
|
36 |
---
|
37 |
|
38 |
+
# WRAP -- A TACO-based Classifier For Inference and Information-Driven Argument Mining on Twitter
|
39 |
|
40 |
Introducing WRAP, an advanced classification model built upon `AutoModelForSequenceClassification`, designed to identify tweets belonging to four
|
41 |
distinct classes: Reason, Statement, Notification, and None of the [TACO dataset](https://anonymous.4open.science/r/TACO).
|
42 |
Designed specifically for extracting information and inferences from Twitter data, this specialized classification model utilizes
|
43 |
[WRAPresentations](https://huggingface.co/TomatenMarc/WRAPresentations), from which WRAP acquires its name.
|
44 |
+
WRAPresentations is an advancement of the [BERTweet-base](https://huggingface.co/vinai/bertweet-base) architecture, whose embeddings were
|
45 |
+
extended on augmented tweets using contrastive learning for better encoding inference and information in tweets.
|
46 |
|
47 |
## Class Semantics
|
48 |
|
|
|
63 |
In its entirety, WRAP can classify the following hierarchy for tweets:
|
64 |
|
65 |
<div align="center">
|
66 |
+
<img src="https://github.com/TomatenMarc/public-images/raw/main/Argument_Tree.svg" alt="Component Space" width="100%">
|
67 |
</div>
|
68 |
|
69 |
## Usage
|
|
|
85 |
print(prediction)
|
86 |
```
|
87 |
|
88 |
+
<a href="https://anonymous.4open.science/r/TACO/notebooks/classifier_cv.ipynb">
|
89 |
<blockquote style="border-left: 5px solid grey; background-color: #f0f5ff; padding: 10px;">
|
90 |
Notice: The tweets need to undergo preprocessing before classification.
|
91 |
</blockquote>
|
|
|
113 |
|
114 |
<p>
|
115 |
<blockquote style="border-left: 5px solid grey; background-color: #f0f5ff; padding: 10px;">
|
116 |
+
Notice: Our training involved WRAP to forecast class predictions, where the categories (information/inference) represent class aggregations
|
117 |
based on the inference or information component.
|
118 |
</blockquote>
|
119 |
<p>
|
|
|
161 |
| Macro-F1 | Inference | Information | Multiclass |
|
162 |
|-------------|-----------|-------------|------------|
|
163 |
| In-Topic | 87.71% | 85.34% | 75.80% |
|
164 |
+
| Cross-Topic | 86.71% | 84.58% | 73.92% |
|
165 |
|
166 |
### Classification
|
167 |
|