TomatenMarc commited on
Commit
a0c027d
·
1 Parent(s): 690b8a6

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -35,14 +35,14 @@ widget:
35
  example_tite: "Unlabeled 6"
36
  ---
37
 
38
- # WRAP -- A Content Management System for Twitter
39
 
40
  Introducing WRAP, an advanced classification model built upon `AutoModelForSequenceClassification`, designed to identify tweets belonging to four
41
  distinct classes: Reason, Statement, Notification, and None of the [TACO dataset](https://anonymous.4open.science/r/TACO).
42
  Designed specifically for extracting information and inferences from Twitter data, this specialized classification model utilizes
43
  [WRAPresentations](https://huggingface.co/TomatenMarc/WRAPresentations), from which WRAP acquires its name.
44
- WRAPresentations is an advancement of the [BERTweet-base](https://huggingface.co/vinai/bertweet-base) architecture, whose pre-training was
45
- extended on augmented tweets using contrastive learning.
46
 
47
  ## Class Semantics
48
 
@@ -63,7 +63,7 @@ or quotation, and thus reveals the author’s motivation *to try to understand a
63
  In its entirety, WRAP can classify the following hierarchy for tweets:
64
 
65
  <div align="center">
66
- <img src="https://github.com/TomatenMarc/public-images/raw/main/Component_Space_WRAP.svg" alt="Component Space" width="100%">
67
  </div>
68
 
69
  ## Usage
@@ -85,7 +85,7 @@ prediction = pipe("Huggingface is awesome")
85
  print(prediction)
86
  ```
87
 
88
- <a href="https://github.com/TomatenMarc/TACO/blob/main/notebooks/classifier_cv.ipynb">
89
  <blockquote style="border-left: 5px solid grey; background-color: #f0f5ff; padding: 10px;">
90
  Notice: The tweets need to undergo preprocessing before classification.
91
  </blockquote>
@@ -113,7 +113,7 @@ Additionally, the category and class distribution of the dataset TACO is as foll
113
 
114
  <p>
115
  <blockquote style="border-left: 5px solid grey; background-color: #f0f5ff; padding: 10px;">
116
- Notice: Our training involved WRAP to forecast class predictions, where the categories (Information/Inference) represent class aggregations
117
  based on the inference or information component.
118
  </blockquote>
119
  <p>
@@ -161,7 +161,7 @@ In total, the WRAP classifier performs as follows:
161
  | Macro-F1 | Inference | Information | Multiclass |
162
  |-------------|-----------|-------------|------------|
163
  | In-Topic | 87.71% | 85.34% | 75.80% |
164
- | Cross-Topic | 86.71% | 84.59% | 73.92% |
165
 
166
  ### Classification
167
 
 
35
  example_tite: "Unlabeled 6"
36
  ---
37
 
38
+ # WRAP -- A TACO-based Classifier For Inference and Information-Driven Argument Mining on Twitter
39
 
40
  Introducing WRAP, an advanced classification model built upon `AutoModelForSequenceClassification`, designed to identify tweets belonging to four
41
  distinct classes: Reason, Statement, Notification, and None of the [TACO dataset](https://anonymous.4open.science/r/TACO).
42
  Designed specifically for extracting information and inferences from Twitter data, this specialized classification model utilizes
43
  [WRAPresentations](https://huggingface.co/TomatenMarc/WRAPresentations), from which WRAP acquires its name.
44
+ WRAPresentations is an advancement of the [BERTweet-base](https://huggingface.co/vinai/bertweet-base) architecture, whose embeddings were
45
+ extended on augmented tweets using contrastive learning for better encoding inference and information in tweets.
46
 
47
  ## Class Semantics
48
 
 
63
  In its entirety, WRAP can classify the following hierarchy for tweets:
64
 
65
  <div align="center">
66
+ <img src="https://github.com/TomatenMarc/public-images/raw/main/Argument_Tree.svg" alt="Component Space" width="100%">
67
  </div>
68
 
69
  ## Usage
 
85
  print(prediction)
86
  ```
87
 
88
+ <a href="https://anonymous.4open.science/r/TACO/notebooks/classifier_cv.ipynb">
89
  <blockquote style="border-left: 5px solid grey; background-color: #f0f5ff; padding: 10px;">
90
  Notice: The tweets need to undergo preprocessing before classification.
91
  </blockquote>
 
113
 
114
  <p>
115
  <blockquote style="border-left: 5px solid grey; background-color: #f0f5ff; padding: 10px;">
116
+ Notice: Our training involved WRAP to forecast class predictions, where the categories (information/inference) represent class aggregations
117
  based on the inference or information component.
118
  </blockquote>
119
  <p>
 
161
  | Macro-F1 | Inference | Information | Multiclass |
162
  |-------------|-----------|-------------|------------|
163
  | In-Topic | 87.71% | 85.34% | 75.80% |
164
+ | Cross-Topic | 86.71% | 84.58% | 73.92% |
165
 
166
  ### Classification
167