File size: 1,989 Bytes
cc0ea7e b817f20 cc0ea7e b817f20 cc0ea7e b817f20 cc0ea7e b817f20 cc0ea7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: mit
base_model: VietAI/envit5-base
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: envit5-base-iwslt15
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# envit5-base-iwslt15
This model is a fine-tuned version of [VietAI/envit5-base](https://huggingface.co/VietAI/envit5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2687
- Bleu: 21.8184
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 2.0209 | 1.0 | 1250 | 1.7844 | 20.7717 |
| 1.5711 | 2.0 | 2500 | 1.7072 | 22.0149 |
| 1.2667 | 3.0 | 3750 | 1.7304 | 22.3730 |
| 1.0436 | 4.0 | 5000 | 1.7903 | 22.0901 |
| 0.8655 | 5.0 | 6250 | 1.8831 | 22.0823 |
| 0.7478 | 6.0 | 7500 | 1.9738 | 22.0309 |
| 0.6292 | 7.0 | 8750 | 2.0935 | 21.9696 |
| 0.5586 | 8.0 | 10000 | 2.1611 | 22.1045 |
| 0.5046 | 9.0 | 11250 | 2.2271 | 21.7866 |
| 0.4626 | 10.0 | 12500 | 2.2687 | 21.8184 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1
|