End of training
Browse files
README.md
CHANGED
|
@@ -25,16 +25,16 @@ model-index:
|
|
| 25 |
metrics:
|
| 26 |
- name: Precision
|
| 27 |
type: precision
|
| 28 |
-
value: 0.
|
| 29 |
- name: Recall
|
| 30 |
type: recall
|
| 31 |
-
value: 0.
|
| 32 |
- name: F1
|
| 33 |
type: f1
|
| 34 |
-
value: 0.
|
| 35 |
- name: Accuracy
|
| 36 |
type: accuracy
|
| 37 |
-
value: 0.
|
| 38 |
---
|
| 39 |
|
| 40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 44 |
|
| 45 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
|
| 46 |
It achieves the following results on the evaluation set:
|
| 47 |
-
- Loss: 0.
|
| 48 |
-
- Precision: 0.
|
| 49 |
-
- Recall: 0.
|
| 50 |
-
- F1: 0.
|
| 51 |
-
- Accuracy: 0.
|
| 52 |
|
| 53 |
## Model description
|
| 54 |
|
|
@@ -79,8 +79,8 @@ The following hyperparameters were used during training:
|
|
| 79 |
|
| 80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 82 |
-
| No log | 1.0 | 107 | 0.
|
| 83 |
-
| No log | 2.0 | 214 | 0.
|
| 84 |
|
| 85 |
|
| 86 |
### Framework versions
|
|
|
|
| 25 |
metrics:
|
| 26 |
- name: Precision
|
| 27 |
type: precision
|
| 28 |
+
value: 0.4609164420485175
|
| 29 |
- name: Recall
|
| 30 |
type: recall
|
| 31 |
+
value: 0.15848007414272475
|
| 32 |
- name: F1
|
| 33 |
type: f1
|
| 34 |
+
value: 0.23586206896551726
|
| 35 |
- name: Accuracy
|
| 36 |
type: accuracy
|
| 37 |
+
value: 0.9349322388953016
|
| 38 |
---
|
| 39 |
|
| 40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
|
| 44 |
|
| 45 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
|
| 46 |
It achieves the following results on the evaluation set:
|
| 47 |
+
- Loss: 0.3042
|
| 48 |
+
- Precision: 0.4609
|
| 49 |
+
- Recall: 0.1585
|
| 50 |
+
- F1: 0.2359
|
| 51 |
+
- Accuracy: 0.9349
|
| 52 |
|
| 53 |
## Model description
|
| 54 |
|
|
|
|
| 79 |
|
| 80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 82 |
+
| No log | 1.0 | 107 | 0.3166 | 0.1639 | 0.0093 | 0.0175 | 0.9275 |
|
| 83 |
+
| No log | 2.0 | 214 | 0.3042 | 0.4609 | 0.1585 | 0.2359 | 0.9349 |
|
| 84 |
|
| 85 |
|
| 86 |
### Framework versions
|