Tien09 commited on
Commit
2c0529c
·
verified ·
1 Parent(s): 811800f

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 128,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,487 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:8959
11
+ - loss:CoSENTLoss
12
+ base_model: prajjwal1/bert-tiny
13
+ widget:
14
+ - source_sentence: 'This card is treated as a Normal Monster while face-up on the
15
+ field or in the GY. While this card is face-up on the field, you can Normal Summon
16
+ it to have it become an Effect Monster with this effect. During your End Phase:
17
+ You can target 1 Equip Spell Card in your GY; add that target to your hand. You
18
+ can only use this effect of "Knight Day Grepher" once per turn.'
19
+ sentences:
20
+ - "2 Beast-Warrior monsters, including a WIND \"Ancient Warriors\" monster\r\nAll\
21
+ \ \"Ancient Warriors\" monsters you control gain 500 ATK/DEF. You can only use\
22
+ \ each of the following effects of \"Ancient Warriors Oath - Double Dragon Lords\"\
23
+ \ once per turn. If this card is Link Summoned: You can add 1 \"Ancient Warriors\"\
24
+ \ card from your Deck to your hand. (Quick Effect): You can send 1 card from your\
25
+ \ hand or field to the GY, then target 1 face-up card your opponent controls;\
26
+ \ return it to the hand."
27
+ - Place 1 Ocean Counter on this card during each player's Standby Phases. When this
28
+ card is removed from the field, all Fish-Type and Sea Serpent-Type monsters you
29
+ control gain 200 ATK for each Ocean Counter on this card, until the End Phase.
30
+ - 'If you have no cards in your GY (Quick Effect): You can send this card from your
31
+ hand to the GY; until the end of the next turn, any card sent to the GY is banished
32
+ instead.'
33
+ - source_sentence: "Target 1 monster on the field or in either GY, then activate 1\
34
+ \ of these appropriate effects;\r\n● Attach the targeted monster to 1 Rank 2 monster\
35
+ \ you control as material.\r\n● Place the targeted monster your opponent controls\
36
+ \ in your zone your Link-2 monster points to, and take control of it.\r\n● Special\
37
+ \ Summon the targeted monster from either GY to your zone your Link-2 monster\
38
+ \ points to.\r\nYou can only activate 1 \"Spright Double Cross\" per turn."
39
+ sentences:
40
+ - '1 Level 1 monster When an opponent''s monster declares an attack: You can Tribute
41
+ this card; change that opponent''s monster''s ATK to 0, until the end of this
42
+ turn. If this card is in your GY (Quick Effect): You can Tribute 1 Level 1 monster;
43
+ Special Summon this card. You can only use this effect of "Linkuriboh" once per
44
+ turn.'
45
+ - This creature's wings are capable of generating tornadoes.
46
+ - 'You can target 1 monster you control with 0 ATK and 1 DARK Reptile monster in
47
+ your GY; destroy that monster on the field, and if you do, Special Summon the
48
+ other monster from your GY. If your opponent activates a monster effect: You can
49
+ target 1 face-up monster they control with 0 ATK; take control of it, then Special
50
+ Summon 1 "Reptilianne Token" (Reptile/EARTH/Level 1/ATK 0/DEF 0) to your opponent''s
51
+ field. You can only use each effect of "Reptilianne Recoil" once per turn.'
52
+ - source_sentence: 'Add 1 LIGHT Machine monster that cannot be Normal Summoned/Set,
53
+ or 1 "Cyber Dragon" monster, from your Deck to your hand. If the activation of
54
+ this card in its owner''s possession was negated by your opponent''s card effect
55
+ and sent to your GY: You can discard 1 card; add this card to your hand. You can
56
+ only activate 1 "Cyberse Emergency" per turn.'
57
+ sentences:
58
+ - 'Cannot be destroyed by monster effects. You can only use each of the following
59
+ effects of "Shining Sarcophagus" once per turn. During your Main Phase: You can
60
+ add 1 card that mentions "Shining Sarcophagus" from your Deck to your hand, except
61
+ "Shining Sarcophagus". If your opponent Special Summons a monster(s) from the
62
+ GY (except during the Damage Step): You can discard 1 Spell, then target 1 of
63
+ those monsters; send it to the GY.'
64
+ - Activate only while all monsters on the field are face-up. Both players send monsters
65
+ they control to the GY so that they each control only 1 Attribute.
66
+ - 'When your opponent activates a Pendulum Monster''s effect, or an effect of a
67
+ card in the Pendulum Zone: Negate the activation, and if you do, banish that card.'
68
+ - source_sentence: Fusion Summon 1 Fusion Monster from your Extra Deck, using monsters
69
+ from your hand or your side of the field as Fusion Materials.
70
+ sentences:
71
+ - "(This card is always treated as an \"Infernoble Knight\" card.)\r\nYou can discard\
72
+ \ this card, then target 1 Warrior monster you control; equip it with 1 Equip\
73
+ \ Spell from your Deck that can equip to it. When this card, not equipped with\
74
+ \ an Equip Card, is destroyed by battle with an opponent's monster and sent to\
75
+ \ the GY: You can Special Summon this card, and if you do, equip that monster\
76
+ \ your opponent controls to this card. You can only use each effect of \"Courageous\
77
+ \ Crimson Chevalier Bradamante\" once per turn."
78
+ - Destroy as many Normal Monsters on the field as possible, and if you do, Special
79
+ Summon Level 4 or lower Dinosaur-Type monsters from your Deck, up to the number
80
+ destroyed, but destroy them during the End Phase. You can banish this card from
81
+ your GY, then target 1 Dinosaur-Type monster you control and 1 card your opponent
82
+ controls; destroy them.
83
+ - '1 "Elemental HERO" monster + 1 WIND monster
84
+
85
+ Must be Fusion Summoned and cannot be Special Summoned by other ways. When this
86
+ card is Fusion Summoned: Halve the ATK and DEF of all face-up monsters your opponent
87
+ controls.'
88
+ - source_sentence: '2 Cyberse monsters If this card is Link Summoned: You can add
89
+ 1 "Cynet Fusion" from your Deck to your hand. If a monster(s) is Special Summoned
90
+ to a zone(s) this card points to (except during the Damage Step): You can target
91
+ 1 Level 4 or lower Cyberse monster in your GY; Special Summon it, but negate its
92
+ effects, also you cannot Special Summon monsters from the Extra Deck for the rest
93
+ of this turn, except Fusion Monsters. You can only use each effect of "Clock Spartoi"
94
+ once per turn.'
95
+ sentences:
96
+ - You can banish 1 "Virtual World" card from your GY, then target 1 face-up monster
97
+ on the field; negate its effects until the end of this turn (even if this card
98
+ leaves the field). You can banish this card from your GY; add 1 "Virtual World"
99
+ monster from your Deck to your hand, then send 1 card from your hand to the GY.
100
+ You can only use each effect of "Virtual World Gate - Qinglong" once per turn.
101
+ - '(Quick Effect): You can Tribute 2 monsters, then target 1 of your Normal Traps
102
+ that is banished or in your GY; Set that target, but place it on the bottom of
103
+ the Deck when it leaves the field. You can only use this effect of "Malice, Lady
104
+ of Lament" once per turn.'
105
+ - Remove from play 1 "Assault Mode Activate" from your GY. Destroy all monsters
106
+ you control and Special Summon 1 "/Assault Mode" monster from your GY, ignoring
107
+ its Summoning conditions. Its effect(s) is negated, and it cannot be Tributed.
108
+ If it is removed from the field, remove it from play.
109
+ datasets:
110
+ - Tien09/pair_similarity_new_1
111
+ pipeline_tag: sentence-similarity
112
+ library_name: sentence-transformers
113
+ ---
114
+
115
+ # MPNet base trained on AllNLI triplets
116
+
117
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on the [pair_similarity_new_1](https://huggingface.co/datasets/Tien09/pair_similarity_new_1) dataset. It maps sentences & paragraphs to a 128-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
118
+
119
+ ## Model Details
120
+
121
+ ### Model Description
122
+ - **Model Type:** Sentence Transformer
123
+ - **Base model:** [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) <!-- at revision 6f75de8b60a9f8a2fdf7b69cbd86d9e64bcb3837 -->
124
+ - **Maximum Sequence Length:** 512 tokens
125
+ - **Output Dimensionality:** 128 dimensions
126
+ - **Similarity Function:** Cosine Similarity
127
+ - **Training Dataset:**
128
+ - [pair_similarity_new_1](https://huggingface.co/datasets/Tien09/pair_similarity_new_1)
129
+ - **Language:** en
130
+ - **License:** apache-2.0
131
+
132
+ ### Model Sources
133
+
134
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
135
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
136
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
137
+
138
+ ### Full Model Architecture
139
+
140
+ ```
141
+ SentenceTransformer(
142
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
143
+ (1): Pooling({'word_embedding_dimension': 128, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
144
+ )
145
+ ```
146
+
147
+ ## Usage
148
+
149
+ ### Direct Usage (Sentence Transformers)
150
+
151
+ First install the Sentence Transformers library:
152
+
153
+ ```bash
154
+ pip install -U sentence-transformers
155
+ ```
156
+
157
+ Then you can load this model and run inference.
158
+ ```python
159
+ from sentence_transformers import SentenceTransformer
160
+
161
+ # Download from the 🤗 Hub
162
+ model = SentenceTransformer("Tien09/tiny_bert_ft_sim_score_1")
163
+ # Run inference
164
+ sentences = [
165
+ '2 Cyberse monsters If this card is Link Summoned: You can add 1 "Cynet Fusion" from your Deck to your hand. If a monster(s) is Special Summoned to a zone(s) this card points to (except during the Damage Step): You can target 1 Level 4 or lower Cyberse monster in your GY; Special Summon it, but negate its effects, also you cannot Special Summon monsters from the Extra Deck for the rest of this turn, except Fusion Monsters. You can only use each effect of "Clock Spartoi" once per turn.',
166
+ 'You can banish 1 "Virtual World" card from your GY, then target 1 face-up monster on the field; negate its effects until the end of this turn (even if this card leaves the field). You can banish this card from your GY; add 1 "Virtual World" monster from your Deck to your hand, then send 1 card from your hand to the GY. You can only use each effect of "Virtual World Gate - Qinglong" once per turn.',
167
+ 'Remove from play 1 "Assault Mode Activate" from your GY. Destroy all monsters you control and Special Summon 1 "/Assault Mode" monster from your GY, ignoring its Summoning conditions. Its effect(s) is negated, and it cannot be Tributed. If it is removed from the field, remove it from play.',
168
+ ]
169
+ embeddings = model.encode(sentences)
170
+ print(embeddings.shape)
171
+ # [3, 128]
172
+
173
+ # Get the similarity scores for the embeddings
174
+ similarities = model.similarity(embeddings, embeddings)
175
+ print(similarities.shape)
176
+ # [3, 3]
177
+ ```
178
+
179
+ <!--
180
+ ### Direct Usage (Transformers)
181
+
182
+ <details><summary>Click to see the direct usage in Transformers</summary>
183
+
184
+ </details>
185
+ -->
186
+
187
+ <!--
188
+ ### Downstream Usage (Sentence Transformers)
189
+
190
+ You can finetune this model on your own dataset.
191
+
192
+ <details><summary>Click to expand</summary>
193
+
194
+ </details>
195
+ -->
196
+
197
+ <!--
198
+ ### Out-of-Scope Use
199
+
200
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
201
+ -->
202
+
203
+ <!--
204
+ ## Bias, Risks and Limitations
205
+
206
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
207
+ -->
208
+
209
+ <!--
210
+ ### Recommendations
211
+
212
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
213
+ -->
214
+
215
+ ## Training Details
216
+
217
+ ### Training Dataset
218
+
219
+ #### pair_similarity_new_1
220
+
221
+ * Dataset: [pair_similarity_new_1](https://huggingface.co/datasets/Tien09/pair_similarity_new_1) at [c49380e](https://huggingface.co/datasets/Tien09/pair_similarity_new_1/tree/c49380e225d024f12dda0a938f22ef44ca3168ba)
222
+ * Size: 8,959 training samples
223
+ * Columns: <code>effect_text</code>, <code>score</code>, and <code>effect_text2</code>
224
+ * Approximate statistics based on the first 1000 samples:
225
+ | | effect_text | score | effect_text2 |
226
+ |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|:-----------------------------------------------------------------------------------|
227
+ | type | string | float | string |
228
+ | details | <ul><li>min: 9 tokens</li><li>mean: 73.57 tokens</li><li>max: 204 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.74</li><li>max: 1.0</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 73.05 tokens</li><li>max: 181 tokens</li></ul> |
229
+ * Samples:
230
+ | effect_text | score | effect_text2 |
231
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
232
+ | <code>When your opponent's monster attacks a face-up Level 4 or lower Toon Monster on your side of the field, you can make the attack a direct attack to your Life Points.</code> | <code>0.0</code> | <code>During either player's Main Phase: Special Summon this card as a Normal Monster (Reptile-Type/EARTH/Level 4/ATK 1600/DEF 1800). (This card is also still a Trap Card.)</code> |
233
+ | <code>When your opponent Special Summons a monster, you can discard 1 card to Special Summon this card from your hand. Your opponent cannot remove cards from play.</code> | <code>1.0</code> | <code>Activate this card by discarding 1 monster, then target 1 monster in your GY whose Level is lower than the discarded monster's original Level; Special Summon it and equip it with this card. The equipped monster has its effects negated. You can only activate 1 "Overdone Burial" per turn.</code> |
234
+ | <code>Mystical Elf" + "Curtain of the Dark Ones</code> | <code>0.0</code> | <code>A destructive machine discovered in the Ruins of the Ancients.</code> |
235
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
236
+ ```json
237
+ {
238
+ "scale": 20.0,
239
+ "similarity_fct": "pairwise_cos_sim"
240
+ }
241
+ ```
242
+
243
+ ### Evaluation Dataset
244
+
245
+ #### pair_similarity_new_1
246
+
247
+ * Dataset: [pair_similarity_new_1](https://huggingface.co/datasets/Tien09/pair_similarity_new_1) at [c49380e](https://huggingface.co/datasets/Tien09/pair_similarity_new_1/tree/c49380e225d024f12dda0a938f22ef44ca3168ba)
248
+ * Size: 1,920 evaluation samples
249
+ * Columns: <code>effect_text</code>, <code>score</code>, and <code>effect_text2</code>
250
+ * Approximate statistics based on the first 1000 samples:
251
+ | | effect_text | score | effect_text2 |
252
+ |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|:----------------------------------------------------------------------------------|
253
+ | type | string | float | string |
254
+ | details | <ul><li>min: 6 tokens</li><li>mean: 72.29 tokens</li><li>max: 190 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.74</li><li>max: 1.0</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 72.2 tokens</li><li>max: 185 tokens</li></ul> |
255
+ * Samples:
256
+ | effect_text | score | effect_text2 |
257
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
258
+ | <code>2+ Level 4 monsters<br>This Xyz Summoned card gains 500 ATK x the total Link Rating of Link Monsters linked to this card. You can detach 2 materials from this card, then target 1 4 Cyberse Link Monster in your GY; Special Summon it to your field so it points to this card, also you cannot Special Summon other monsters or attack directly for the rest of this turn.</code> | <code>1.0</code> | <code>3 Level 4 monsters Once per turn, you can also Xyz Summon "Zoodiac Tigermortar" by using 1 "Zoodiac" monster you control with a different name as Xyz Material. (If you used an Xyz Monster, any Xyz Materials attached to it also become Xyz Materials on this card.) This card gains ATK and DEF equal to the ATK and DEF of all "Zoodiac" monsters attached to it as Materials. Once per turn: You can detach 1 Xyz Material from this card, then target 1 Xyz Monster you control and 1 "Zoodiac" monster in your GY; attach that "Zoodiac" monster to that Xyz Monster as Xyz Material.</code> |
259
+ | <code>1 Tuner + 1 or more non-Tuner Pendulum Monsters Once per turn: You can target 1 Pendulum Monster on the field or 1 card in the Pendulum Zone; destroy it, and if you do, shuffle 1 card on the field into the Deck. Once per turn: You can Special Summon 1 "Dracoslayer" monster from your Deck in Defense Position, but it cannot be used as a Synchro Material for a Summon.</code> | <code>0.5</code> | <code>You can Ritual Summon this card with a "Recipe" card. If this card is Special Summoned: You can target 1 Spell/Trap on the field; destroy it. When a card or effect is activated that targets this card on the field, or when this card is targeted for an attack (Quick Effect): You can Tribute this card and 1 Attack Position monster on either field, and if you do, Special Summon 1 Level 3 or 4 "Nouvelles" Ritual Monster from your hand or Deck. You can only use each effect of "Confiras de Nouvelles" once per turn.</code> |
260
+ | <code>If you control an Illusion or Spellcaster monster: Add 1 "White Forest" monster from your Deck to your hand. If this card is sent to the GY to activate a monster effect: You can Set this card. You can only use each effect of "Tales of the White Forest" once per turn.</code> | <code>1.0</code> | <code>If you control no monsters, you can Special Summon this card (from your hand). You can only use each of the following effects of "Kashtira Fenrir" once per turn. During your Main Phase: You can add 1 "Kashtira" monster from your Deck to your hand. When this card declares an attack, or if your opponent activates a monster effect (except during the Damage Step): You can target 1 face-up card your opponent controls; banish it, face-down.</code> |
261
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
262
+ ```json
263
+ {
264
+ "scale": 20.0,
265
+ "similarity_fct": "pairwise_cos_sim"
266
+ }
267
+ ```
268
+
269
+ ### Training Hyperparameters
270
+ #### Non-Default Hyperparameters
271
+
272
+ - `eval_strategy`: steps
273
+ - `per_device_train_batch_size`: 16
274
+ - `per_device_eval_batch_size`: 16
275
+ - `num_train_epochs`: 5
276
+ - `warmup_ratio`: 0.1
277
+ - `fp16`: True
278
+ - `batch_sampler`: no_duplicates
279
+
280
+ #### All Hyperparameters
281
+ <details><summary>Click to expand</summary>
282
+
283
+ - `overwrite_output_dir`: False
284
+ - `do_predict`: False
285
+ - `eval_strategy`: steps
286
+ - `prediction_loss_only`: True
287
+ - `per_device_train_batch_size`: 16
288
+ - `per_device_eval_batch_size`: 16
289
+ - `per_gpu_train_batch_size`: None
290
+ - `per_gpu_eval_batch_size`: None
291
+ - `gradient_accumulation_steps`: 1
292
+ - `eval_accumulation_steps`: None
293
+ - `torch_empty_cache_steps`: None
294
+ - `learning_rate`: 5e-05
295
+ - `weight_decay`: 0.0
296
+ - `adam_beta1`: 0.9
297
+ - `adam_beta2`: 0.999
298
+ - `adam_epsilon`: 1e-08
299
+ - `max_grad_norm`: 1.0
300
+ - `num_train_epochs`: 5
301
+ - `max_steps`: -1
302
+ - `lr_scheduler_type`: linear
303
+ - `lr_scheduler_kwargs`: {}
304
+ - `warmup_ratio`: 0.1
305
+ - `warmup_steps`: 0
306
+ - `log_level`: passive
307
+ - `log_level_replica`: warning
308
+ - `log_on_each_node`: True
309
+ - `logging_nan_inf_filter`: True
310
+ - `save_safetensors`: True
311
+ - `save_on_each_node`: False
312
+ - `save_only_model`: False
313
+ - `restore_callback_states_from_checkpoint`: False
314
+ - `no_cuda`: False
315
+ - `use_cpu`: False
316
+ - `use_mps_device`: False
317
+ - `seed`: 42
318
+ - `data_seed`: None
319
+ - `jit_mode_eval`: False
320
+ - `use_ipex`: False
321
+ - `bf16`: False
322
+ - `fp16`: True
323
+ - `fp16_opt_level`: O1
324
+ - `half_precision_backend`: auto
325
+ - `bf16_full_eval`: False
326
+ - `fp16_full_eval`: False
327
+ - `tf32`: None
328
+ - `local_rank`: 0
329
+ - `ddp_backend`: None
330
+ - `tpu_num_cores`: None
331
+ - `tpu_metrics_debug`: False
332
+ - `debug`: []
333
+ - `dataloader_drop_last`: False
334
+ - `dataloader_num_workers`: 0
335
+ - `dataloader_prefetch_factor`: None
336
+ - `past_index`: -1
337
+ - `disable_tqdm`: False
338
+ - `remove_unused_columns`: True
339
+ - `label_names`: None
340
+ - `load_best_model_at_end`: False
341
+ - `ignore_data_skip`: False
342
+ - `fsdp`: []
343
+ - `fsdp_min_num_params`: 0
344
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
345
+ - `fsdp_transformer_layer_cls_to_wrap`: None
346
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
347
+ - `deepspeed`: None
348
+ - `label_smoothing_factor`: 0.0
349
+ - `optim`: adamw_torch
350
+ - `optim_args`: None
351
+ - `adafactor`: False
352
+ - `group_by_length`: False
353
+ - `length_column_name`: length
354
+ - `ddp_find_unused_parameters`: None
355
+ - `ddp_bucket_cap_mb`: None
356
+ - `ddp_broadcast_buffers`: False
357
+ - `dataloader_pin_memory`: True
358
+ - `dataloader_persistent_workers`: False
359
+ - `skip_memory_metrics`: True
360
+ - `use_legacy_prediction_loop`: False
361
+ - `push_to_hub`: False
362
+ - `resume_from_checkpoint`: None
363
+ - `hub_model_id`: None
364
+ - `hub_strategy`: every_save
365
+ - `hub_private_repo`: None
366
+ - `hub_always_push`: False
367
+ - `gradient_checkpointing`: False
368
+ - `gradient_checkpointing_kwargs`: None
369
+ - `include_inputs_for_metrics`: False
370
+ - `include_for_metrics`: []
371
+ - `eval_do_concat_batches`: True
372
+ - `fp16_backend`: auto
373
+ - `push_to_hub_model_id`: None
374
+ - `push_to_hub_organization`: None
375
+ - `mp_parameters`:
376
+ - `auto_find_batch_size`: False
377
+ - `full_determinism`: False
378
+ - `torchdynamo`: None
379
+ - `ray_scope`: last
380
+ - `ddp_timeout`: 1800
381
+ - `torch_compile`: False
382
+ - `torch_compile_backend`: None
383
+ - `torch_compile_mode`: None
384
+ - `dispatch_batches`: None
385
+ - `split_batches`: None
386
+ - `include_tokens_per_second`: False
387
+ - `include_num_input_tokens_seen`: False
388
+ - `neftune_noise_alpha`: None
389
+ - `optim_target_modules`: None
390
+ - `batch_eval_metrics`: False
391
+ - `eval_on_start`: False
392
+ - `use_liger_kernel`: False
393
+ - `eval_use_gather_object`: False
394
+ - `average_tokens_across_devices`: False
395
+ - `prompts`: None
396
+ - `batch_sampler`: no_duplicates
397
+ - `multi_dataset_batch_sampler`: proportional
398
+
399
+ </details>
400
+
401
+ ### Training Logs
402
+ | Epoch | Step | Training Loss | Validation Loss |
403
+ |:------:|:----:|:-------------:|:---------------:|
404
+ | 0.1786 | 100 | 4.6579 | 4.3287 |
405
+ | 0.3571 | 200 | 4.3378 | 4.2222 |
406
+ | 0.5357 | 300 | 4.2299 | 4.1919 |
407
+ | 0.7143 | 400 | 4.2124 | 4.1616 |
408
+ | 0.8929 | 500 | 4.1399 | 4.1370 |
409
+ | 1.0714 | 600 | 4.2017 | 4.1200 |
410
+ | 1.25 | 700 | 4.1343 | 4.1058 |
411
+ | 1.4286 | 800 | 4.0805 | 4.1072 |
412
+ | 1.6071 | 900 | 4.0843 | 4.0773 |
413
+ | 1.7857 | 1000 | 4.01 | 4.0771 |
414
+ | 1.9643 | 1100 | 4.0615 | 4.0627 |
415
+ | 2.1429 | 1200 | 4.0847 | 4.0468 |
416
+ | 2.3214 | 1300 | 3.9798 | 4.0659 |
417
+ | 2.5 | 1400 | 3.9663 | 4.0551 |
418
+ | 2.6786 | 1500 | 3.9625 | 4.0335 |
419
+ | 2.8571 | 1600 | 3.9096 | 4.0306 |
420
+ | 3.0357 | 1700 | 4.0127 | 4.0105 |
421
+ | 3.2143 | 1800 | 3.9753 | 4.0077 |
422
+ | 3.3929 | 1900 | 3.8669 | 4.0188 |
423
+ | 3.5714 | 2000 | 3.8983 | 4.0174 |
424
+ | 3.75 | 2100 | 3.9077 | 4.0025 |
425
+ | 3.9286 | 2200 | 3.8346 | 4.0218 |
426
+ | 4.1071 | 2300 | 3.9618 | 3.9921 |
427
+ | 4.2857 | 2400 | 3.8631 | 3.9981 |
428
+ | 4.4643 | 2500 | 3.8456 | 4.0014 |
429
+ | 4.6429 | 2600 | 3.8655 | 3.9976 |
430
+ | 4.8214 | 2700 | 3.8248 | 4.0031 |
431
+ | 5.0 | 2800 | 3.8935 | 4.0016 |
432
+
433
+
434
+ ### Framework Versions
435
+ - Python: 3.10.12
436
+ - Sentence Transformers: 3.3.1
437
+ - Transformers: 4.47.1
438
+ - PyTorch: 2.5.1+cu121
439
+ - Accelerate: 1.2.1
440
+ - Datasets: 3.2.0
441
+ - Tokenizers: 0.21.0
442
+
443
+ ## Citation
444
+
445
+ ### BibTeX
446
+
447
+ #### Sentence Transformers
448
+ ```bibtex
449
+ @inproceedings{reimers-2019-sentence-bert,
450
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
451
+ author = "Reimers, Nils and Gurevych, Iryna",
452
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
453
+ month = "11",
454
+ year = "2019",
455
+ publisher = "Association for Computational Linguistics",
456
+ url = "https://arxiv.org/abs/1908.10084",
457
+ }
458
+ ```
459
+
460
+ #### CoSENTLoss
461
+ ```bibtex
462
+ @online{kexuefm-8847,
463
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
464
+ author={Su Jianlin},
465
+ year={2022},
466
+ month={Jan},
467
+ url={https://kexue.fm/archives/8847},
468
+ }
469
+ ```
470
+
471
+ <!--
472
+ ## Glossary
473
+
474
+ *Clearly define terms in order to be accessible across audiences.*
475
+ -->
476
+
477
+ <!--
478
+ ## Model Card Authors
479
+
480
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
481
+ -->
482
+
483
+ <!--
484
+ ## Model Card Contact
485
+
486
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
487
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "prajjwal1/bert-tiny",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 128,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 512,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 2,
17
+ "num_hidden_layers": 2,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.47.1",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4257585363499b38eeb40118f60e0132c40870a7a2dbb360064f3633a966953c
3
+ size 17547912
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff