|
"""Tokenization classes.""" |
|
|
|
from __future__ import (absolute_import, division, print_function, |
|
unicode_literals) |
|
import collections |
|
import unicodedata |
|
import six |
|
import logging |
|
import sentencepiece as spm |
|
|
|
logger = logging.getLogger(__name__) |
|
SPIECE_UNDERLINE = u"▁" |
|
|
|
def preprocess_text(inputs,remove_space=True,do_lower_case=True): |
|
if remove_space: |
|
outputs = ' '.join(inputs.strip().split()) |
|
else: |
|
outputs = inputs |
|
outputs = outputs.replace("``", '"').replace("''", '"') |
|
if six.PY2 and isinstance(outputs, str): |
|
outputs = outputs.decode('utf-8') |
|
outputs = unicodedata.normalize("NFKD", outputs) |
|
outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) |
|
if do_lower_case: |
|
outputs = outputs.lower() |
|
return outputs |
|
|
|
def encode_pieces(sp_model, text, return_unicode=True, sample=False): |
|
"""turn sentences into word pieces.""" |
|
|
|
if six.PY2 and isinstance(text, unicode): |
|
text = text.encode('utf-8') |
|
if not sample: |
|
pieces = sp_model.EncodeAsPieces(text) |
|
else: |
|
pieces = sp_model.SampleEncodeAsPieces(text, 64, 0.1) |
|
new_pieces = [] |
|
for piece in pieces: |
|
if len(piece) > 1 and piece[-1] == ',' and piece[-2].isdigit(): |
|
cur_pieces = sp_model.EncodeAsPieces( |
|
piece[:-1].replace(SPIECE_UNDERLINE, '')) |
|
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: |
|
if len(cur_pieces[0]) == 1: |
|
cur_pieces = cur_pieces[1:] |
|
else: |
|
cur_pieces[0] = cur_pieces[0][1:] |
|
cur_pieces.append(piece[-1]) |
|
new_pieces.extend(cur_pieces) |
|
else: |
|
new_pieces.append(piece) |
|
|
|
|
|
if six.PY2 and return_unicode: |
|
ret_pieces = [] |
|
for piece in new_pieces: |
|
if isinstance(piece, str): |
|
piece = piece.decode(piece, "utf-8") |
|
ret_pieces.append(piece) |
|
new_pieces = ret_pieces |
|
|
|
return new_pieces |
|
|
|
def encode_ids(sp_model, text, sample=False): |
|
pieces = encode_pieces(sp_model, text, return_unicode=False, sample=sample) |
|
ids = [sp_model.PieceToId(piece) for piece in pieces] |
|
return ids |
|
|
|
|
|
def load_vocab(vocab_file): |
|
"""Loads a vocabulary file into a dictionary.""" |
|
vocab = collections.OrderedDict() |
|
with open(vocab_file, "r", encoding="utf-8") as reader: |
|
tokens = reader.readlines() |
|
for index, token in enumerate(tokens): |
|
token = token.rstrip('\n') |
|
vocab[token] = index |
|
return vocab |
|
|
|
def convert_by_vocab(vocab, items): |
|
"""Converts a sequence of [tokens|ids] using the vocab.""" |
|
output = [] |
|
for item in items: |
|
try: |
|
output.append(vocab[item]) |
|
except: |
|
output.append(vocab['[UNK]']) |
|
return output |
|
|
|
def convert_tokens_to_ids(vocab, tokens): |
|
return convert_by_vocab(vocab, tokens) |
|
|
|
def convert_ids_to_tokens(inv_vocab, ids): |
|
return convert_by_vocab(inv_vocab, ids) |
|
|
|
def whitespace_tokenize(text): |
|
"""Runs basic whitespace cleaning and splitting on a piece of text.""" |
|
text = text.strip() |
|
if not text: |
|
return [] |
|
tokens = text.split() |
|
return tokens |
|
|
|
class FullTokenizer(object): |
|
"""Runs end-to-end tokenziation.""" |
|
|
|
def __init__(self, vocab_file, do_lower_case=True, spm_model_file=None): |
|
self.vocab = None |
|
self.sp_model = None |
|
if spm_model_file: |
|
self.sp_model = spm.SentencePieceProcessor() |
|
logger.info("loading sentence piece model") |
|
self.sp_model.Load(spm_model_file) |
|
|
|
|
|
|
|
|
|
|
|
self.vocab = load_vocab(vocab_file) |
|
else: |
|
print("load vocab") |
|
self.vocab = load_vocab(vocab_file) |
|
print("load token") |
|
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) |
|
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab,unk_token="[UNK]", max_input_chars_per_word=100) |
|
self.inv_vocab = {v: k for k, v in self.vocab.items()} |
|
|
|
def tokenize(self, text): |
|
if self.sp_model: |
|
split_tokens = encode_pieces(self.sp_model, text, return_unicode=False) |
|
else: |
|
split_tokens = [] |
|
for token in self.basic_tokenizer.tokenize(text): |
|
for sub_token in self.wordpiece_tokenizer.tokenize(token): |
|
split_tokens.append(sub_token) |
|
|
|
return split_tokens |
|
|
|
def convert_tokens_to_ids(self, tokens): |
|
if self.sp_model: |
|
|
|
return convert_by_vocab(self.vocab, tokens) |
|
else: |
|
return convert_by_vocab(self.vocab, tokens) |
|
|
|
def convert_ids_to_tokens(self, ids): |
|
if self.sp_model: |
|
logger.info("using sentence piece tokenzier.") |
|
return [self.sp_model.IdToPiece(id_) for id_ in ids] |
|
else: |
|
return convert_by_vocab(self.inv_vocab, ids) |
|
|
|
class BasicTokenizer(object): |
|
"""Runs basic tokenization (punctuation splitting, lower casing, etc.).""" |
|
|
|
def __init__(self, do_lower_case=True): |
|
"""Constructs a BasicTokenizer. |
|
|
|
Args: |
|
do_lower_case: Whether to lower case the input. |
|
""" |
|
self.do_lower_case = do_lower_case |
|
|
|
def tokenize(self, text): |
|
"""Tokenizes a piece of text.""" |
|
text = self._clean_text(text) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text = self._tokenize_chinese_chars(text) |
|
orig_tokens = whitespace_tokenize(text) |
|
split_tokens = [] |
|
for token in orig_tokens: |
|
if self.do_lower_case: |
|
token = token.lower() |
|
token = self._run_strip_accents(token) |
|
split_tokens.extend(self._run_split_on_punc(token)) |
|
output_tokens = whitespace_tokenize(" ".join(split_tokens)) |
|
return output_tokens |
|
|
|
def _run_strip_accents(self, text): |
|
"""Strips accents from a piece of text.""" |
|
text = unicodedata.normalize("NFD", text) |
|
output = [] |
|
for char in text: |
|
cat = unicodedata.category(char) |
|
if cat == "Mn": |
|
continue |
|
output.append(char) |
|
return "".join(output) |
|
|
|
def _run_split_on_punc(self, text): |
|
"""Splits punctuation on a piece of text.""" |
|
chars = list(text) |
|
i = 0 |
|
start_new_word = True |
|
output = [] |
|
while i < len(chars): |
|
char = chars[i] |
|
if _is_punctuation(char): |
|
output.append([char]) |
|
start_new_word = True |
|
else: |
|
if start_new_word: |
|
output.append([]) |
|
start_new_word = False |
|
output[-1].append(char) |
|
i += 1 |
|
|
|
return ["".join(x) for x in output] |
|
|
|
def _tokenize_chinese_chars(self, text): |
|
"""Adds whitespace around any CJK character.""" |
|
output = [] |
|
for char in text: |
|
cp = ord(char) |
|
if self._is_chinese_char(cp): |
|
output.append(" ") |
|
output.append(char) |
|
output.append(" ") |
|
else: |
|
output.append(char) |
|
return "".join(output) |
|
|
|
def _is_chinese_char(self, cp): |
|
"""Checks whether CP is the codepoint of a CJK character.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ((cp >= 0x4E00 and cp <= 0x9FFF) or |
|
(cp >= 0x3400 and cp <= 0x4DBF) or |
|
(cp >= 0x20000 and cp <= 0x2A6DF) or |
|
(cp >= 0x2A700 and cp <= 0x2B73F) or |
|
(cp >= 0x2B740 and cp <= 0x2B81F) or |
|
(cp >= 0x2B820 and cp <= 0x2CEAF) or |
|
(cp >= 0xF900 and cp <= 0xFAFF) or |
|
(cp >= 0x2F800 and cp <= 0x2FA1F)): |
|
return True |
|
|
|
return False |
|
|
|
def _clean_text(self, text): |
|
"""Performs invalid character removal and whitespace cleanup on text.""" |
|
output = [] |
|
for char in text: |
|
cp = ord(char) |
|
if cp == 0 or cp == 0xfffd or _is_control(char): |
|
continue |
|
if _is_whitespace(char): |
|
output.append(" ") |
|
else: |
|
output.append(char) |
|
return "".join(output) |
|
|
|
class WordpieceTokenizer(object): |
|
"""Runs WordPiece tokenization.""" |
|
|
|
def __init__(self, vocab, unk_token, max_input_chars_per_word=100): |
|
self.vocab = vocab |
|
self.unk_token = unk_token |
|
self.max_input_chars_per_word = max_input_chars_per_word |
|
|
|
def tokenize(self, text): |
|
"""Tokenizes a piece of text into its word pieces. |
|
|
|
This uses a greedy longest-match-first algorithm to perform tokenization |
|
using the given vocabulary. |
|
|
|
For example: |
|
input = "unaffable" |
|
output = ["un", "##aff", "##able"] |
|
|
|
Args: |
|
text: A single token or whitespace separated tokens. This should have |
|
already been passed through `BasicTokenizer`. |
|
|
|
Returns: |
|
A list of wordpiece tokens. |
|
""" |
|
|
|
output_tokens = [] |
|
for token in whitespace_tokenize(text): |
|
chars = list(token) |
|
if len(chars) > self.max_input_chars_per_word: |
|
output_tokens.append(self.unk_token) |
|
continue |
|
|
|
is_bad = False |
|
start = 0 |
|
sub_tokens = [] |
|
while start < len(chars): |
|
end = len(chars) |
|
cur_substr = None |
|
while start < end: |
|
substr = "".join(chars[start:end]) |
|
if start > 0: |
|
substr = "##" + substr |
|
if substr in self.vocab: |
|
cur_substr = substr |
|
break |
|
end -= 1 |
|
if cur_substr is None: |
|
is_bad = True |
|
break |
|
sub_tokens.append(cur_substr) |
|
start = end |
|
|
|
if is_bad: |
|
output_tokens.append(self.unk_token) |
|
else: |
|
output_tokens.extend(sub_tokens) |
|
return output_tokens |
|
|
|
def _is_whitespace(char): |
|
"""Checks whether `chars` is a whitespace character.""" |
|
|
|
|
|
if char == " " or char == "\t" or char == "\n" or char == "\r": |
|
return True |
|
cat = unicodedata.category(char) |
|
if cat == "Zs": |
|
return True |
|
return False |
|
|
|
|
|
def _is_control(char): |
|
"""Checks whether `chars` is a control character.""" |
|
|
|
|
|
if char == "\t" or char == "\n" or char == "\r": |
|
return False |
|
cat = unicodedata.category(char) |
|
if cat in ("Cc", "Cf"): |
|
return True |
|
return False |
|
|
|
def _is_punctuation(char): |
|
"""Checks whether `chars` is a punctuation character.""" |
|
cp = ord(char) |
|
|
|
|
|
|
|
|
|
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or |
|
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): |
|
return True |
|
cat = unicodedata.category(char) |
|
if cat.startswith("P"): |
|
return True |
|
return False |
|
|