|
"""PyTorch BERT model.""" |
|
|
|
from __future__ import (absolute_import, division, print_function, |
|
unicode_literals) |
|
|
|
import logging |
|
import os |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from torch.nn import functional as F |
|
from model.configuration_utils import PretrainedConfig |
|
from model.file_utils import cached_path, WEIGHTS_NAME, TF_WEIGHTS_NAME |
|
|
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
try: |
|
from torch.nn import Identity |
|
except ImportError: |
|
|
|
class Identity(nn.Module): |
|
r"""A placeholder identity operator that is argument-insensitive. |
|
""" |
|
def __init__(self, *args, **kwargs): |
|
super(Identity, self).__init__() |
|
|
|
def forward(self, input): |
|
return input |
|
|
|
class PreTrainedModel(nn.Module): |
|
r""" Base class for all models. |
|
|
|
:class:`~pytorch_transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods for loading/downloading/saving models |
|
as well as a few methods commons to all models to (i) resize the input embeddings and (ii) prune heads in the self-attention heads. |
|
|
|
Class attributes (overridden by derived classes): |
|
- ``config_class``: a class derived from :class:`~pytorch_transformers.PretrainedConfig` to use as configuration class for this model architecture. |
|
- ``pretrained_model_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained weights as values. |
|
- ``load_tf_weights``: a python ``method`` for loading a TensorFlow checkpoint in a PyTorch model, taking as arguments: |
|
|
|
- ``model``: an instance of the relevant subclass of :class:`~pytorch_transformers.PreTrainedModel`, |
|
- ``config``: an instance of the relevant subclass of :class:`~pytorch_transformers.PretrainedConfig`, |
|
- ``path``: a path (string) to the TensorFlow checkpoint. |
|
|
|
- ``base_model_prefix``: a string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model. |
|
""" |
|
config_class = None |
|
pretrained_model_archive_map = {} |
|
load_tf_weights = lambda model, config, path: None |
|
base_model_prefix = "" |
|
|
|
def __init__(self, config, *inputs, **kwargs): |
|
super(PreTrainedModel, self).__init__() |
|
if not isinstance(config, PretrainedConfig): |
|
raise ValueError( |
|
"Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. " |
|
"To create a model from a pretrained model use " |
|
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( |
|
self.__class__.__name__, self.__class__.__name__ |
|
)) |
|
|
|
self.config = config |
|
|
|
def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None): |
|
""" Build a resized Embedding Module from a provided token Embedding Module. |
|
Increasing the size will add newly initialized vectors at the end |
|
Reducing the size will remove vectors from the end |
|
|
|
Args: |
|
new_num_tokens: (`optional`) int |
|
New number of tokens in the embedding matrix. |
|
Increasing the size will add newly initialized vectors at the end |
|
Reducing the size will remove vectors from the end |
|
If not provided or None: return the provided token Embedding Module. |
|
Return: ``torch.nn.Embeddings`` |
|
Pointer to the resized Embedding Module or the old Embedding Module if new_num_tokens is None |
|
""" |
|
if new_num_tokens is None: |
|
return old_embeddings |
|
|
|
old_num_tokens, old_embedding_dim = old_embeddings.weight.size() |
|
if old_num_tokens == new_num_tokens: |
|
return old_embeddings |
|
|
|
|
|
new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim) |
|
new_embeddings.to(old_embeddings.weight.device) |
|
|
|
|
|
self._init_weights(new_embeddings) |
|
|
|
|
|
num_tokens_to_copy = min(old_num_tokens, new_num_tokens) |
|
new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :] |
|
|
|
return new_embeddings |
|
|
|
def _tie_or_clone_weights(self, first_module, second_module): |
|
""" Tie or clone module weights depending of weither we are using TorchScript or not |
|
""" |
|
|
|
if self.config.torchscript: |
|
first_module.weight = nn.Parameter(second_module.weight.clone()) |
|
else: |
|
first_module.weight = second_module.weight |
|
|
|
|
|
if hasattr(first_module, 'bias') and first_module.bias is not None: |
|
first_module.bias.data = torch.nn.functional.pad( |
|
first_module.bias.data, |
|
(0, first_module.weight.shape[0] - first_module.bias.shape[0]), |
|
'constant', |
|
0 |
|
) |
|
|
|
def resize_token_embeddings(self, new_num_tokens=None): |
|
""" Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size. |
|
Take care of tying weights embeddings afterwards if the model class has a `tie_weights()` method. |
|
|
|
Arguments: |
|
|
|
new_num_tokens: (`optional`) int: |
|
New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. |
|
If not provided or None: does nothing and just returns a pointer to the input tokens ``torch.nn.Embeddings`` Module of the model. |
|
|
|
Return: ``torch.nn.Embeddings`` |
|
Pointer to the input tokens Embeddings Module of the model |
|
""" |
|
base_model = getattr(self, self.base_model_prefix, self) |
|
model_embeds = base_model._resize_token_embeddings(new_num_tokens) |
|
if new_num_tokens is None: |
|
return model_embeds |
|
|
|
|
|
self.config.vocab_size = new_num_tokens |
|
base_model.vocab_size = new_num_tokens |
|
|
|
|
|
if hasattr(self, 'tie_weights'): |
|
self.tie_weights() |
|
|
|
return model_embeds |
|
|
|
def init_weights(self): |
|
""" Initialize and prunes weights if needed. """ |
|
|
|
self.apply(self._init_weights) |
|
|
|
|
|
if self.config.pruned_heads: |
|
self.prune_heads(self.config.pruned_heads) |
|
|
|
def prune_heads(self, heads_to_prune): |
|
""" Prunes heads of the base model. |
|
|
|
Arguments: |
|
|
|
heads_to_prune: dict with keys being selected layer indices (`int`) and associated values being the list of heads to prune in said layer (list of `int`). |
|
E.g. {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2. |
|
""" |
|
base_model = getattr(self, self.base_model_prefix, self) |
|
|
|
|
|
for layer, heads in heads_to_prune.items(): |
|
union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads) |
|
self.config.pruned_heads[layer] = list(union_heads) |
|
|
|
base_model._prune_heads(heads_to_prune) |
|
|
|
def save_pretrained(self, save_directory): |
|
""" Save a model and its configuration file to a directory, so that it |
|
can be re-loaded using the `:func:`~pytorch_transformers.PreTrainedModel.from_pretrained`` class method. |
|
""" |
|
assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved" |
|
|
|
|
|
model_to_save = self.module if hasattr(self, 'module') else self |
|
|
|
|
|
model_to_save.config.save_pretrained(save_directory) |
|
|
|
|
|
output_model_file = os.path.join(save_directory, WEIGHTS_NAME) |
|
|
|
torch.save(model_to_save.state_dict(), output_model_file) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): |
|
r"""Instantiate a pretrained pytorch model from a pre-trained model configuration. |
|
|
|
The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated) |
|
To train the model, you should first set it back in training mode with ``model.train()`` |
|
|
|
The warning ``Weights from XXX not initialized from pretrained model`` means that the weights of XXX do not come pre-trained with the rest of the model. |
|
It is up to you to train those weights with a downstream fine-tuning task. |
|
|
|
The warning ``Weights from XXX not used in YYY`` means that the layer XXX is not used by YYY, therefore those weights are discarded. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path: either: |
|
|
|
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. |
|
- a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. |
|
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. |
|
|
|
model_args: (`optional`) Sequence of positional arguments: |
|
All remaning positional arguments will be passed to the underlying model's ``__init__`` method |
|
|
|
config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`: |
|
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: |
|
|
|
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or |
|
- the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. |
|
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. |
|
|
|
state_dict: (`optional`) dict: |
|
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. |
|
This option can be used if you want to create a model from a pretrained configuration but load your own weights. |
|
In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option. |
|
|
|
cache_dir: (`optional`) string: |
|
Path to a directory in which a downloaded pre-trained model |
|
configuration should be cached if the standard cache should not be used. |
|
|
|
force_download: (`optional`) boolean, default False: |
|
Force to (re-)download the model weights and configuration files and override the cached versions if they exists. |
|
|
|
proxies: (`optional`) dict, default None: |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. |
|
The proxies are used on each request. |
|
|
|
output_loading_info: (`optional`) boolean: |
|
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. |
|
|
|
kwargs: (`optional`) Remaining dictionary of keyword arguments: |
|
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded: |
|
|
|
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) |
|
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. |
|
|
|
Examples:: |
|
|
|
model = BertModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. |
|
model = BertModel.from_pretrained('./test/saved_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` |
|
model = BertModel.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading |
|
assert model.config.output_attention == True |
|
# Loading from a TF checkpoint file instead of a PyTorch model (slower) |
|
config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json') |
|
model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config) |
|
|
|
""" |
|
config = kwargs.pop('config', None) |
|
state_dict = kwargs.pop('state_dict', None) |
|
cache_dir = kwargs.pop('cache_dir', None) |
|
from_tf = kwargs.pop('from_tf', False) |
|
force_download = kwargs.pop('force_download', False) |
|
proxies = kwargs.pop('proxies', None) |
|
output_loading_info = kwargs.pop('output_loading_info', False) |
|
|
|
|
|
if config is None: |
|
config, model_kwargs = cls.config_class.from_pretrained( |
|
pretrained_model_name_or_path, *model_args, |
|
cache_dir=cache_dir, return_unused_kwargs=True, |
|
force_download=force_download, |
|
**kwargs |
|
) |
|
else: |
|
model_kwargs = kwargs |
|
|
|
|
|
if pretrained_model_name_or_path in cls.pretrained_model_archive_map: |
|
archive_file = cls.pretrained_model_archive_map[pretrained_model_name_or_path] |
|
elif os.path.isdir(pretrained_model_name_or_path): |
|
if from_tf: |
|
|
|
archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index") |
|
else: |
|
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) |
|
else: |
|
if from_tf: |
|
|
|
archive_file = pretrained_model_name_or_path + ".index" |
|
else: |
|
archive_file = pretrained_model_name_or_path |
|
|
|
try: |
|
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies) |
|
except EnvironmentError as e: |
|
if pretrained_model_name_or_path in cls.pretrained_model_archive_map: |
|
logger.error( |
|
"Couldn't reach server at '{}' to download pretrained weights.".format( |
|
archive_file)) |
|
else: |
|
logger.error( |
|
"Model name '{}' was not found in model name list ({}). " |
|
"We assumed '{}' was a path or url but couldn't find any file " |
|
"associated to this path or url.".format( |
|
pretrained_model_name_or_path, |
|
', '.join(cls.pretrained_model_archive_map.keys()), |
|
archive_file)) |
|
raise e |
|
if resolved_archive_file == archive_file: |
|
logger.info("loading weights file {}".format(archive_file)) |
|
else: |
|
logger.info("loading weights file {} from cache at {}".format( |
|
archive_file, resolved_archive_file)) |
|
|
|
|
|
model = cls(config, *model_args, **model_kwargs) |
|
|
|
if state_dict is None and not from_tf: |
|
state_dict = torch.load(resolved_archive_file, map_location='cpu') |
|
if from_tf: |
|
|
|
return cls.load_tf_weights(model, config, resolved_archive_file[:-6]) |
|
|
|
|
|
old_keys = [] |
|
new_keys = [] |
|
for key in state_dict.keys(): |
|
new_key = None |
|
if 'gamma' in key: |
|
new_key = key.replace('gamma', 'weight') |
|
if 'beta' in key: |
|
new_key = key.replace('beta', 'bias') |
|
if new_key: |
|
old_keys.append(key) |
|
new_keys.append(new_key) |
|
for old_key, new_key in zip(old_keys, new_keys): |
|
state_dict[new_key] = state_dict.pop(old_key) |
|
|
|
|
|
missing_keys = [] |
|
unexpected_keys = [] |
|
error_msgs = [] |
|
|
|
metadata = getattr(state_dict, '_metadata', None) |
|
state_dict = state_dict.copy() |
|
if metadata is not None: |
|
state_dict._metadata = metadata |
|
|
|
def load(module, prefix=''): |
|
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) |
|
module._load_from_state_dict( |
|
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) |
|
for name, child in module._modules.items(): |
|
if child is not None: |
|
load(child, prefix + name + '.') |
|
|
|
|
|
start_prefix = '' |
|
model_to_load = model |
|
if not hasattr(model, cls.base_model_prefix) and any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()): |
|
start_prefix = cls.base_model_prefix + '.' |
|
if hasattr(model, cls.base_model_prefix) and not any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()): |
|
model_to_load = getattr(model, cls.base_model_prefix) |
|
|
|
load(model_to_load, prefix=start_prefix) |
|
if len(missing_keys) > 0: |
|
logger.info("Weights of {} not initialized from pretrained model: {}".format( |
|
model.__class__.__name__, missing_keys)) |
|
if len(unexpected_keys) > 0: |
|
logger.info("Weights from pretrained model not used in {}: {}".format( |
|
model.__class__.__name__, unexpected_keys)) |
|
if len(error_msgs) > 0: |
|
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( |
|
model.__class__.__name__, "\n\t".join(error_msgs))) |
|
|
|
if hasattr(model, 'tie_weights'): |
|
model.tie_weights() |
|
|
|
|
|
model.eval() |
|
|
|
if output_loading_info: |
|
loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "error_msgs": error_msgs} |
|
return model, loading_info |
|
|
|
return model |
|
|
|
|
|
class Conv1D(nn.Module): |
|
def __init__(self, nf, nx): |
|
""" Conv1D layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2) |
|
Basically works like a Linear layer but the weights are transposed |
|
""" |
|
super(Conv1D, self).__init__() |
|
self.nf = nf |
|
w = torch.empty(nx, nf) |
|
nn.init.normal_(w, std=0.02) |
|
self.weight = nn.Parameter(w) |
|
self.bias = nn.Parameter(torch.zeros(nf)) |
|
|
|
def forward(self, x): |
|
size_out = x.size()[:-1] + (self.nf,) |
|
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) |
|
x = x.view(*size_out) |
|
return x |
|
|
|
|
|
class PoolerStartLogits(nn.Module): |
|
""" Compute SQuAD start_logits from sequence hidden states. """ |
|
def __init__(self, config): |
|
super(PoolerStartLogits, self).__init__() |
|
self.dense = nn.Linear(config.hidden_size, 1) |
|
|
|
def forward(self, hidden_states, p_mask=None): |
|
""" Args: |
|
**p_mask**: (`optional`) ``torch.FloatTensor`` of shape `(batch_size, seq_len)` |
|
invalid position mask such as query and special symbols (PAD, SEP, CLS) |
|
1.0 means token should be masked. |
|
""" |
|
x = self.dense(hidden_states).squeeze(-1) |
|
|
|
if p_mask is not None: |
|
x = x * (1 - p_mask) - 1e30 * p_mask |
|
|
|
return x |
|
|
|
|
|
class PoolerEndLogits(nn.Module): |
|
""" Compute SQuAD end_logits from sequence hidden states and start token hidden state. |
|
""" |
|
def __init__(self, config): |
|
super(PoolerEndLogits, self).__init__() |
|
self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dense_1 = nn.Linear(config.hidden_size, 1) |
|
|
|
def forward(self, hidden_states, start_states=None, start_positions=None, p_mask=None): |
|
""" Args: |
|
One of ``start_states``, ``start_positions`` should be not None. |
|
If both are set, ``start_positions`` overrides ``start_states``. |
|
|
|
**start_states**: ``torch.LongTensor`` of shape identical to hidden_states |
|
hidden states of the first tokens for the labeled span. |
|
**start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` |
|
position of the first token for the labeled span: |
|
**p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)`` |
|
Mask of invalid position such as query and special symbols (PAD, SEP, CLS) |
|
1.0 means token should be masked. |
|
""" |
|
assert start_states is not None or start_positions is not None, "One of start_states, start_positions should be not None" |
|
if start_positions is not None: |
|
slen, hsz = hidden_states.shape[-2:] |
|
start_positions = start_positions[:, None, None].expand(-1, -1, hsz) |
|
start_states = hidden_states.gather(-2, start_positions) |
|
start_states = start_states.expand(-1, slen, -1) |
|
|
|
x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1)) |
|
x = self.activation(x) |
|
x = self.LayerNorm(x) |
|
x = self.dense_1(x).squeeze(-1) |
|
|
|
if p_mask is not None: |
|
x = x * (1 - p_mask) - 1e30 * p_mask |
|
|
|
return x |
|
|
|
|
|
class PoolerAnswerClass(nn.Module): |
|
""" Compute SQuAD 2.0 answer class from classification and start tokens hidden states. """ |
|
def __init__(self, config): |
|
super(PoolerAnswerClass, self).__init__() |
|
self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False) |
|
|
|
def forward(self, hidden_states, start_states=None, start_positions=None, cls_index=None): |
|
""" |
|
Args: |
|
One of ``start_states``, ``start_positions`` should be not None. |
|
If both are set, ``start_positions`` overrides ``start_states``. |
|
|
|
**start_states**: ``torch.LongTensor`` of shape identical to ``hidden_states``. |
|
hidden states of the first tokens for the labeled span. |
|
**start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` |
|
position of the first token for the labeled span. |
|
**cls_index**: torch.LongTensor of shape ``(batch_size,)`` |
|
position of the CLS token. If None, take the last token. |
|
|
|
note(Original repo): |
|
no dependency on end_feature so that we can obtain one single `cls_logits` |
|
for each sample |
|
""" |
|
hsz = hidden_states.shape[-1] |
|
assert start_states is not None or start_positions is not None, "One of start_states, start_positions should be not None" |
|
if start_positions is not None: |
|
start_positions = start_positions[:, None, None].expand(-1, -1, hsz) |
|
start_states = hidden_states.gather(-2, start_positions).squeeze(-2) |
|
|
|
if cls_index is not None: |
|
cls_index = cls_index[:, None, None].expand(-1, -1, hsz) |
|
cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) |
|
else: |
|
cls_token_state = hidden_states[:, -1, :] |
|
|
|
x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1)) |
|
x = self.activation(x) |
|
x = self.dense_1(x).squeeze(-1) |
|
|
|
return x |
|
|
|
|
|
class SQuADHead(nn.Module): |
|
r""" A SQuAD head inspired by XLNet. |
|
|
|
Parameters: |
|
config (:class:`~pytorch_transformers.XLNetConfig`): Model configuration class with all the parameters of the model. |
|
|
|
Inputs: |
|
**hidden_states**: ``torch.FloatTensor`` of shape ``(batch_size, seq_len, hidden_size)`` |
|
hidden states of sequence tokens |
|
**start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` |
|
position of the first token for the labeled span. |
|
**end_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` |
|
position of the last token for the labeled span. |
|
**cls_index**: torch.LongTensor of shape ``(batch_size,)`` |
|
position of the CLS token. If None, take the last token. |
|
**is_impossible**: ``torch.LongTensor`` of shape ``(batch_size,)`` |
|
Whether the question has a possible answer in the paragraph or not. |
|
**p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)`` |
|
Mask of invalid position such as query and special symbols (PAD, SEP, CLS) |
|
1.0 means token should be masked. |
|
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: |
|
**loss**: (`optional`, returned if both ``start_positions`` and ``end_positions`` are provided) ``torch.FloatTensor`` of shape ``(1,)``: |
|
Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses. |
|
**start_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) |
|
``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)`` |
|
Log probabilities for the top config.start_n_top start token possibilities (beam-search). |
|
**start_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) |
|
``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)`` |
|
Indices for the top config.start_n_top start token possibilities (beam-search). |
|
**end_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) |
|
``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)`` |
|
Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search). |
|
**end_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) |
|
``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)`` |
|
Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search). |
|
**cls_logits**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) |
|
``torch.FloatTensor`` of shape ``(batch_size,)`` |
|
Log probabilities for the ``is_impossible`` label of the answers. |
|
""" |
|
def __init__(self, config): |
|
super(SQuADHead, self).__init__() |
|
self.start_n_top = config.start_n_top |
|
self.end_n_top = config.end_n_top |
|
|
|
self.start_logits = PoolerStartLogits(config) |
|
self.end_logits = PoolerEndLogits(config) |
|
self.answer_class = PoolerAnswerClass(config) |
|
|
|
def forward(self, hidden_states, start_positions=None, end_positions=None, |
|
cls_index=None, is_impossible=None, p_mask=None): |
|
outputs = () |
|
|
|
start_logits = self.start_logits(hidden_states, p_mask=p_mask) |
|
|
|
if start_positions is not None and end_positions is not None: |
|
|
|
for x in (start_positions, end_positions, cls_index, is_impossible): |
|
if x is not None and x.dim() > 1: |
|
x.squeeze_(-1) |
|
|
|
|
|
end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask) |
|
|
|
loss_fct = CrossEntropyLoss() |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if cls_index is not None and is_impossible is not None: |
|
|
|
cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index) |
|
loss_fct_cls = nn.BCEWithLogitsLoss() |
|
cls_loss = loss_fct_cls(cls_logits, is_impossible) |
|
|
|
|
|
total_loss += cls_loss * 0.5 |
|
|
|
outputs = (total_loss,) + outputs |
|
|
|
else: |
|
|
|
bsz, slen, hsz = hidden_states.size() |
|
start_log_probs = F.softmax(start_logits, dim=-1) |
|
|
|
start_top_log_probs, start_top_index = torch.topk(start_log_probs, self.start_n_top, dim=-1) |
|
start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) |
|
start_states = torch.gather(hidden_states, -2, start_top_index_exp) |
|
start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) |
|
|
|
hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(start_states) |
|
p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None |
|
end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask) |
|
end_log_probs = F.softmax(end_logits, dim=1) |
|
|
|
end_top_log_probs, end_top_index = torch.topk(end_log_probs, self.end_n_top, dim=1) |
|
end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top) |
|
end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top) |
|
|
|
start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs) |
|
cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index) |
|
|
|
outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) + outputs |
|
|
|
|
|
|
|
return outputs |
|
|
|
|
|
class SequenceSummary(nn.Module): |
|
r""" Compute a single vector summary of a sequence hidden states according to various possibilities: |
|
Args of the config class: |
|
summary_type: |
|
- 'last' => [default] take the last token hidden state (like XLNet) |
|
- 'first' => take the first token hidden state (like Bert) |
|
- 'mean' => take the mean of all tokens hidden states |
|
- 'cls_index' => supply a Tensor of classification token position (GPT/GPT-2) |
|
- 'attn' => Not implemented now, use multi-head attention |
|
summary_use_proj: Add a projection after the vector extraction |
|
summary_proj_to_labels: If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False. |
|
summary_activation: 'tanh' => add a tanh activation to the output, Other => no activation. Default |
|
summary_first_dropout: Add a dropout before the projection and activation |
|
summary_last_dropout: Add a dropout after the projection and activation |
|
""" |
|
def __init__(self, config): |
|
super(SequenceSummary, self).__init__() |
|
|
|
self.summary_type = config.summary_type if hasattr(config, 'summary_use_proj') else 'last' |
|
if self.summary_type == 'attn': |
|
|
|
|
|
|
|
raise NotImplementedError |
|
|
|
self.summary = Identity() |
|
if hasattr(config, 'summary_use_proj') and config.summary_use_proj: |
|
if hasattr(config, 'summary_proj_to_labels') and config.summary_proj_to_labels and config.num_labels > 0: |
|
num_classes = config.num_labels |
|
else: |
|
num_classes = config.hidden_size |
|
self.summary = nn.Linear(config.hidden_size, num_classes) |
|
|
|
self.activation = Identity() |
|
if hasattr(config, 'summary_activation') and config.summary_activation == 'tanh': |
|
self.activation = nn.Tanh() |
|
|
|
self.first_dropout = Identity() |
|
if hasattr(config, 'summary_first_dropout') and config.summary_first_dropout > 0: |
|
self.first_dropout = nn.Dropout(config.summary_first_dropout) |
|
|
|
self.last_dropout = Identity() |
|
if hasattr(config, 'summary_last_dropout') and config.summary_last_dropout > 0: |
|
self.last_dropout = nn.Dropout(config.summary_last_dropout) |
|
|
|
def forward(self, hidden_states, cls_index=None): |
|
""" hidden_states: float Tensor in shape [bsz, seq_len, hidden_size], the hidden-states of the last layer. |
|
cls_index: [optional] position of the classification token if summary_type == 'cls_index', |
|
shape (bsz,) or more generally (bsz, ...) where ... are optional leading dimensions of hidden_states. |
|
if summary_type == 'cls_index' and cls_index is None: |
|
we take the last token of the sequence as classification token |
|
""" |
|
if self.summary_type == 'last': |
|
output = hidden_states[:, -1] |
|
elif self.summary_type == 'first': |
|
output = hidden_states[:, 0] |
|
elif self.summary_type == 'mean': |
|
output = hidden_states.mean(dim=1) |
|
elif self.summary_type == 'cls_index': |
|
if cls_index is None: |
|
cls_index = torch.full_like(hidden_states[..., :1, :], hidden_states.shape[-2]-1, dtype=torch.long) |
|
else: |
|
cls_index = cls_index.unsqueeze(-1).unsqueeze(-1) |
|
cls_index = cls_index.expand((-1,) * (cls_index.dim()-1) + (hidden_states.size(-1),)) |
|
|
|
output = hidden_states.gather(-2, cls_index).squeeze(-2) |
|
elif self.summary_type == 'attn': |
|
raise NotImplementedError |
|
|
|
output = self.first_dropout(output) |
|
output = self.summary(output) |
|
output = self.activation(output) |
|
output = self.last_dropout(output) |
|
|
|
return output |
|
|
|
|
|
def prune_linear_layer(layer, index, dim=0): |
|
""" Prune a linear layer (a model parameters) to keep only entries in index. |
|
Return the pruned layer as a new layer with requires_grad=True. |
|
Used to remove heads. |
|
""" |
|
index = index.to(layer.weight.device) |
|
W = layer.weight.index_select(dim, index).clone().detach() |
|
if layer.bias is not None: |
|
if dim == 1: |
|
b = layer.bias.clone().detach() |
|
else: |
|
b = layer.bias[index].clone().detach() |
|
new_size = list(layer.weight.size()) |
|
new_size[dim] = len(index) |
|
new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device) |
|
new_layer.weight.requires_grad = False |
|
new_layer.weight.copy_(W.contiguous()) |
|
new_layer.weight.requires_grad = True |
|
if layer.bias is not None: |
|
new_layer.bias.requires_grad = False |
|
new_layer.bias.copy_(b.contiguous()) |
|
new_layer.bias.requires_grad = True |
|
return new_layer |
|
|
|
|
|
def prune_conv1d_layer(layer, index, dim=1): |
|
""" Prune a Conv1D layer (a model parameters) to keep only entries in index. |
|
A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed. |
|
Return the pruned layer as a new layer with requires_grad=True. |
|
Used to remove heads. |
|
""" |
|
index = index.to(layer.weight.device) |
|
W = layer.weight.index_select(dim, index).clone().detach() |
|
if dim == 0: |
|
b = layer.bias.clone().detach() |
|
else: |
|
b = layer.bias[index].clone().detach() |
|
new_size = list(layer.weight.size()) |
|
new_size[dim] = len(index) |
|
new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device) |
|
new_layer.weight.requires_grad = False |
|
new_layer.weight.copy_(W.contiguous()) |
|
new_layer.weight.requires_grad = True |
|
new_layer.bias.requires_grad = False |
|
new_layer.bias.copy_(b.contiguous()) |
|
new_layer.bias.requires_grad = True |
|
return new_layer |
|
|
|
|
|
def prune_layer(layer, index, dim=None): |
|
""" Prune a Conv1D or nn.Linear layer (a model parameters) to keep only entries in index. |
|
Return the pruned layer as a new layer with requires_grad=True. |
|
Used to remove heads. |
|
""" |
|
if isinstance(layer, nn.Linear): |
|
return prune_linear_layer(layer, index, dim=0 if dim is None else dim) |
|
elif isinstance(layer, Conv1D): |
|
return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim) |
|
else: |
|
raise ValueError("Can't prune layer of class {}".format(layer.__class__)) |
|
|