File size: 1,965 Bytes
8c66bb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
base_model: VietAI/vit5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: vit5-base-standardized-color
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit5-base-standardized-color

This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6954
- Rouge1: 74.1444
- Rouge2: 67.6733
- Rougel: 73.6458
- Rougelsum: 73.7053
- Gen Len: 7.3623

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log        | 1.0   | 472  | 0.7246          | 72.5851 | 65.9384 | 72.1305 | 72.0232   | 8.4407  |
| 1.0847        | 2.0   | 944  | 0.6714          | 73.9038 | 67.1961 | 73.5409 | 73.5136   | 6.214   |
| 0.5906        | 3.0   | 1416 | 0.6565          | 74.0155 | 67.4387 | 73.6696 | 73.6203   | 7.2754  |
| 0.464         | 4.0   | 1888 | 0.6696          | 74.3779 | 67.7236 | 73.9367 | 74.0007   | 7.214   |
| 0.389         | 5.0   | 2360 | 0.6954          | 74.1444 | 67.6733 | 73.6458 | 73.7053   | 7.3623  |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3