Using DQN achitecture with 1e6 total_timesteps to improve results
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- lunar_lander_dqn_v1.zip +3 -0
- lunar_lander_dqn_v1/_stable_baselines3_version +1 -0
- lunar_lander_dqn_v1/data +115 -0
- lunar_lander_dqn_v1/policy.optimizer.pth +3 -0
- lunar_lander_dqn_v1/policy.pth +3 -0
- lunar_lander_dqn_v1/pytorch_variables.pth +3 -0
- lunar_lander_dqn_v1/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -123.02 +/- 62.23
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **DQN** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f566d284320>", "_build": "<function DQNPolicy._build at 0x7f566d2843b0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f566d284440>", "forward": "<function DQNPolicy.forward at 0x7f566d2844d0>", "_predict": "<function DQNPolicy._predict at 0x7f566d284560>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f566d2845f0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f566d284680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f566d2e8d80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAABD5eHJI9MvFaTes9CI9s2EpD8ry5XNYns+GQNHmP0LSPS61GAlDWsu6+R2wYSJ043ULYnbbivnWcDFhvxS+/n26G71mrM4Wx22CNIbiBBwvs59FbLJXAcs7PMa6c8h3AuwfsmQ8sMtIZ8QASXWdVshLdHUCmDCsfPuEGa/b1qefRLJhUW+5uoPz7mzdocg6odg/h/iGJBzL/LZIgIgq+D2l4szt2MfLxtRWTR0Sw06ELoV+q1M7i98BabvxFRJGMQXUonzt210C9Fb8+bnFN4MDNGBLLG5uZhhou6slqV5DXTudQUJwbRNRWL7hH9SzUPyVRfwlcr1k+J+l/5FO5F9Q2sv+HTJ+lvn0onLhjJCZBOINXhE7wsXdaqI85Ecj2SNV10Co6461XKidXCHbmrI369fHma8A190EzYY2uqV6dJqgyeq4lbMhN2YPRkgfXyILs+tyUXiZ7oQziv2KerKNe3bh8qw1J3JEVwc2YzccwBcvCPC8tds9sosK4pVsqbjBPfd3pP3cn6KYwfeNdOSZRfG90R75uJNY+rUwv+fq1s2OuHGEU7sqlmqJ+C7s1LWvm7NVpr4RXiUjYo4E1vqL8xoExAn8fubZgMXLJ5BPKl9Q7+yMh94unPvmmd7TSdCmM/aFonNJyrnK/ubnjJ5arfLDyvlv6AE/Wzw2MqAuDhP1RLITMoCGqsUGy2e+mTMj4KMtBhEItLwNF/82CfA0mwQNAneFNQF2GrURv/zCA63SxyAW4BNzU+idJmaa2HLpAabdquUVFT5SvGHEWVotFl39xUWaOv5GER7NnLgc0UIIfeKkc50fSobnA/OW7/HjE0HQUvbV3Z6VDypkp0mtyu6TJ5rpP8StrXpXqI/RifEJHctM+i5oMjtYsSoz+hhZezhfGndt7d0RtNzlpgCfXVfd5b7f/fGcXI1JhLu8kgSBYHf/ESgAGNTqSMPSYlhlRWqmBK8DGsmL6mxMnnyHmSjkfpxTquHA87N5u2wTGzAhnSqQgZhTu/LPCzMzb/TpZEby4B9v+4bkzmuNGfDXa7OtwveG6LKnIaZF/ngjG5Xruwah8soetczc0CGRgEaxLDGm9rltQSur1m//frK8jAnTlV+1C4vlhAKTjp47HyniLq4Sk7Q74v/1T3AGMRFAWbcvdn+aK5htOzuclM0WS+7TB4I5wQEQKu213wH8LyX95A5RKPwzqAtslNBHA00Zliek6L0tPxLWh2Aa4GecwNY4sXn9fXl8UVkWXt6HnecezVxdYITbIUl1uiu6HlOB5Cev+34PtM2koB9ssQILh9t9ob+eplEf4GuuCX0q2PjbzdfFu01c6WG6pZ5e+2DWnWdVb1TX8UV0sQeuuOBhBEkIYJ1fclZMObV2gDURNWo14xnjrJZuZWHKTAIJ7QE1zTV7eenfNiww8EwslmHHUh08vIgyy7uYiElRJ2u1nSiW2a6nTWpV1lD/qPp7hXoP7tMh827aKpdJYakLFai9SAc2bI2HuTGAw8x9oBLNU5JhiSNWOA3pfw+OLPWIAb5xWjI+Ca7Tg5AaAO8FE3Q+Onv9gRQTT6R/JER85wD3EP562VumrViQWLJUoem0+aKKkFzYaDclS1EW38aepSvMpZ+uxYLmXNOXvG5Sk0a3T/x5N+qnPUz6P55Tbx+wUxUy347iSmy5bAH27j+8L8/oAfPlzpyGqMfAI+ftaIGku/L2TD2+pjMiys3fC2mwMDjlc5i9khyAxpjJ5E7WJnEqkZV0YP5+g84KlvKFZQSYTYYVHdpjF24DmLhnpbf76udeHgC/6ZmT8GbkgG6tXKTpKSlL/47sI/3hwOclfJlqEn8JXdRqrdMbM1pJy+ZYdpn8ZqOjZVnmfw4nt9AoGtbwtqHzpnx73SOzXGESgxfn6CLD//dEd11Sd3srQqE1IlLPSj4GSTDrQYXki2c4ja5Fstywrd3Gt+/yUxGM3TRoJgc9R6xjtaNUh0FMjFK0mP1b9Bg6dNfRFybQYiv3ujiiNdsq40p6ApVDIIjcEJZhfbIB7QTxCRIKPXyV0g527hkHRbxqYa/7bYdNnFSs5JI4H5yyGI5T6DLoJOQSyUfCXHLEa9UQq6+b4akFc6Q49udNO28f3szDAcg0fcqBDVF/7a0V6Udxvhka6lDhLgWjHaTNCtUBnKZNsMQr7JuqDp9XYg1qLg/MV+wTgzUMy25qeIAZ9pfBGCsKfqiZ7MEuk18FyaS/kZwlM8vNleJ8n+UTErPnvqjgWhjwOXMYDQSsTIn0POHSGk9GiLk0xMVmA0eMdP/Z4ft5QpRhJ0e5dSF8uNY/jI1YyPwlFLcgYVa9axPm4MNxL2FWMB+cDHtkqcBj46KoDwtIZ3jNPrEdOgIskStYJhxu2rJv1UTr7NJ1UUZIFsf24Wl3JVPcZUhdD3Nmdqv7a94jyBLWWNdOuGPiJLCv4rhE/GiO85dGYb6iabCRflSER7Yp6NL/VfUFX8P+zRrZQCvuzE0rqMq2b3O/Cx0XkBoRT3OcKNl1nirKTaohnwVyPjgRrPHjhkMxAyHsymYm0QH1kzz6PeBEe6wsBVFD1iLKqHbCRhqyzSrSY6J35ngEENiqLbUFMgyLzuc1siO2L40wgXc9e75sJf/nPymTENJ67RGW2o/NuOD4rGfNk82gaZKa82WQaEdAU4ansLCe4eYYJea3WPknoCqlrsZyiyyvAx6hWX7lS4r6lbcRDRL2uV3chEO7KiH10FpfNFfGpWojCMJaFkr4DPpJ7GBkTqwVMJGNEypsjEmRFir2D8FGtVJvdpyUwULEgPpucHHiy/N/P+eSAm6xGpIi5pLqL3xCe2slcV72N5ky1ti+tdDjxtJCJk9TVsIpVQlNMpk+kvAbSrDzlZJsta2zlhoq6rVQJScg38C0MLXCax6sI99lXjp5/vDDUgMJL8RJeOcqkm4K517q6yq2k7ZDjYxuXV2+j1rsolfEeX/SMr4OpLx0EjfHDmQUfrlbkSRmjpMV43sCTPHAoaeG1FlIEYIZ7dh2p1+VNzvlHTeifuCjPLHIjZEPsRNrRhCHboFJ5jlkqd4294j2TwPjXy9ojvtPcs2BpsGL39tSWctRr6fyUAd0aGnk4CU9ZnZMOEYjw8rhdxc5Ze5cGTCJMD+8EtGkkQHCr9wD6WYbBXvQk0OYhrzjAKIwQpVAME1DRrPlEKPqFX/y70qehThDRuATEkvWcgtLV0Ko34At3gI7Z1epVWCxfdIiTRXPahJe3XPacudNjed2UgK/pya5r5B7cHyXOwkdfLnV9wHtLUTnNOPrimmx20wxygo9lDnw/PqxAd24PS8oMwXy7zGGVlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLYHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652716695.5003893, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANUCFb9yZI8/cGneviApsL0XzPC9WivyOwAAAAAAAAAAXaHGPpy0Bz1c2LA83vwlPSpXcz6Qlfi9AACAPwAAgD9Ly8O+YVYePzNjZL7ADKi7tFKJvAmMKbwAAAAAAAAAAPNTaT5YcZY+nLVAOn6BiLxtwkM7TPaJuwAAAAAAAAAAS/W4vojC4T6uo0S+2RwjvW7wDDz7sXQ8AAAAAAAAAADtBrk+RvUHP6PScj3u9Vq9nHOMOUoHErsAAAAAAAAAAGZQrz25iHs/QMWGPZHBib2SYEO8m3XuugAAAAAAAAAA2gZLP993Jj/WGfk9TOQMvu9JuLySWVm9AAAAAAAAAACPAS2/3KSRP7Qzlr5QwtW9nVebvWJ5DD0AAAAAAAAAAC4YR79XMGE/Qr6FvnbzH7749yS9ljccPQAAAAAAAAAAs4jLPWdunT/Zh4g9bfiavTDfiLyd97I7AAAAAAAAAADrVX6/VH3BPkKBkL41FDG+oqDaOz5UFTsAAAAAAAAAAG0mBz6xJ6k/o87UPjnpB74PF0U9iLRvPQAAAAAAAAAAZrsrPzaXlj42XNc9IKqjvailZjxU9Ke8AAAAAAAAAACeuhG/m8ttP6fFxb6NzfC9uXKhvVOx2jsAAAAAAAAAAMbZWT6u3Jc/bY70PX7unb1JH4W7JeU3vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGPmE7/jo48/xr3hvhONAb7TjfG9Lb1OPAAAAAAAAAAA4IzGPokPBD0upLA8QWH8PASOeT4VvLi9AACAPwAAgD9FpsK+710eP0vOXb4yKTi9mxWFvEVkJbsAAAAAAAAAAJpSaT6AopY+hBJLPE/fV71BjlE7Rm7fOwAAAAAAAAAAlvq3vvc34j66EU2+LFlYvVa0ADxY9NQ7AAAAAAAAAABgubg+GUQIP6PScj3Sd9u81tzGOcAHErsAAAAAAAAAAOb3rT3p63s/dImQPctoj70R40G8gmpZOwAAAAAAAAAA5rhKP7NCJz/YGfk9RCvjvbyNoryYWVm9AAAAAAAAAABwQiy/4fGRPwpMmb5M2/69pdqevboWCj0AAAAAAAAAAEJuRr+9FmI/PiKKvq3qA76Kxyy9etqUPQAAAAAAAAAAwCnKPTKmnT/SrJM9cPu5veIbi7yG50A8AAAAAAAAAAAHnX2/UnvDPqWwjb6nsjS+6+TWOz3a7zsAAAAAAAAAABrdAj56iak/bq/QPhW4Hr7UGjk94X1CPQAAAAAAAAAAKncrP+2Clz4KBNI9Dr3ZvU9xdzxaSca8AAAAAAAAAACyvRC/AnluP9gqxL7v8gG+rSGivf0ZYzwAAAAAAAAAAECiWD6IFZg/P/gBPimYw70pd2W7RSpzuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 2437, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGY9SCU96ZcCUhpRSlIwBbJRNngOMAXSUR0CU2Ka4+bExdX2UKGgGaAloD0MIA0GADB1HXcCUhpRSlGgVTY8BaBZHQJTaZ4iX6ZZ1fZQoaAZoCWgPQwge3941aEdiwJSGlFKUaBVNAANoFkdAlNzdDYywfXV9lChoBmgJaA9DCEM8Ei9PLUPAlIaUUpRoFU3oA2gWR0CU4BWKMvRJdX2UKGgGaAloD0MIE0VI3c4ZUcCUhpRSlGgVTegDaBZHQJTiHFkxyn11fZQoaAZoCWgPQwjTaHIxBqFkwJSGlFKUaBVNrQJoFkdAlOJu2RaHK3V9lChoBmgJaA9DCKD7cma7z2/AlIaUUpRoFU08A2gWR0CU5PB5ooNNdX2UKGgGaAloD0MIqG4u/rYtYsCUhpRSlGgVTbcBaBZHQJTt104iosJ1fZQoaAZoCWgPQwggXtcv2BFFwJSGlFKUaBVN6ANoFkdAlPAiPp6hQHV9lChoBmgJaA9DCP8kPneCIlHAlIaUUpRoFU3oA2gWR0CU8oLc9GI9dX2UKGgGaAloD0MIA9AoXfpqXcCUhpRSlGgVTUYCaBZHQJT0EZ/CqId1fZQoaAZoCWgPQwgOEqJ8QQxSQJSGlFKUaBVNrwNoFkdAlPYLZvkzXXV9lChoBmgJaA9DCJI81/fhIV7AlIaUUpRoFU1fAmgWR0CU/fTzd1uBdX2UKGgGaAloD0MIOBPThVinT8CUhpRSlGgVTegDaBZHQJUFV4Z/CqJ1fZQoaAZoCWgPQwhnYU87/HlFwJSGlFKUaBVN6ANoFkdAlQrrzPKMenV9lChoBmgJaA9DCJIE4Qood17AlIaUUpRoFU1OAmgWR0CVCyB3Roh7dX2UKGgGaAloD0MIxhhYx/HAZ8CUhpRSlGgVTWoCaBZHQJULeaAnUlR1fZQoaAZoCWgPQwiJ0XMLXT5SwJSGlFKUaBVNKgFoFkdAlRp9O6/Zd3V9lChoBmgJaA9DCJ9W0R+aAVjAlIaUUpRoFU3UAWgWR0CVHZcoYvWZdX2UKGgGaAloD0MIOwDirl5gVsCUhpRSlGgVTV8BaBZHQJUqTL4etCB1fZQoaAZoCWgPQwhEp+fdWJZjwJSGlFKUaBVNOwNoFkdAlTRpiVjZtnV9lChoBmgJaA9DCHI2HQFcsGfAlIaUUpRoFU3TAmgWR0CVNjzmOlwcdX2UKGgGaAloD0MIfHxCdt6uScCUhpRSlGgVTegDaBZHQJU7U8vEjxF1fZQoaAZoCWgPQwhvL2mM1hlNwJSGlFKUaBVN6ANoFkdAlT4l76YVqXV9lChoBmgJaA9DCBHGT+Peh1DAlIaUUpRoFU3oA2gWR0CVQaOj7ALzdX2UKGgGaAloD0MIKv7viApvTsCUhpRSlGgVTegDaBZHQJVD/ADaGpN1fZQoaAZoCWgPQwj9h/Tb13EywJSGlFKUaBVN6ANoFkdAlURaVlf7anV9lChoBmgJaA9DCPpjWptGAmjAlIaUUpRoFU34AmgWR0CVRV7Rv3rVdX2UKGgGaAloD0MIOSaL+492UMCUhpRSlGgVTegDaBZHQJVT9cmjTKF1fZQoaAZoCWgPQwjlettMhbdZwJSGlFKUaBVNzwJoFkdAlVZvMB6rvXV9lChoBmgJaA9DCEnyXN8H4GbAlIaUUpRoFU3YA2gWR0CVVvAIppevdX2UKGgGaAloD0MI9s5oqxJNZcCUhpRSlGgVTfwCaBZHQJVapDeCTU11fZQoaAZoCWgPQwjKMVncf9FvwJSGlFKUaBVNIwNoFkdAlV40NOM2nHV9lChoBmgJaA9DCFBSYAFMF1LAlIaUUpRoFU2pAWgWR0CVY+YWLxZudX2UKGgGaAloD0MIQZ5dvnUFY8CUhpRSlGgVTT8CaBZHQJVwrag26091fZQoaAZoCWgPQwjbvkf99U9gwJSGlFKUaBVNRwJoFkdAlXy5l8PWhHV9lChoBmgJaA9DCF5nQ/6Zw0RAlIaUUpRoFU2qA2gWR0CVf0z67/XHdX2UKGgGaAloD0MIfjhIiPIIVMCUhpRSlGgVTegDaBZHQJWDbHS4OMF1fZQoaAZoCWgPQwj1L0llikNLQJSGlFKUaBVNqQNoFkdAlYtbWVeKK3V9lChoBmgJaA9DCP5hS4+mTFrAlIaUUpRoFU0vAmgWR0CVjUlVcUuddX2UKGgGaAloD0MIlKMAUbB2ZsCUhpRSlGgVTYsDaBZHQJWQS6WgOBl1fZQoaAZoCWgPQwgXSian9kJkwJSGlFKUaBVNGwNoFkdAlZKoFmnO0XV9lChoBmgJaA9DCCRE+YIWzFTAlIaUUpRoFU3oA2gWR0CVmyulGgBcdX2UKGgGaAloD0MIP6cgPxuYYMCUhpRSlGgVTXcCaBZHQJWgStlqagF1fZQoaAZoCWgPQwgr+64IflNrwJSGlFKUaBVNowNoFkdAlaB/IS13MnV9lChoBmgJaA9DCM8u3/qwPVzAlIaUUpRoFU03AmgWR0CVoKzfaYeDdX2UKGgGaAloD0MIdbFppRC2SsCUhpRSlGgVTegDaBZHQJWjz1tfoid1fZQoaAZoCWgPQwhWtg95yylXwJSGlFKUaBVNcgFoFkdAladh7mdRSHV9lChoBmgJaA9DCDqvsUtULl3AlIaUUpRoFU1lAWgWR0CVrFqn3ta7dX2UKGgGaAloD0MIaLCp86jaUcCUhpRSlGgVS5xoFkdAla04IKMNt3V9lChoBmgJaA9DCLsJvmn6P1vAlIaUUpRoFU0tAWgWR0CVrX/0/W1/dX2UKGgGaAloD0MIsoUgB6V9YMCUhpRSlGgVTWwBaBZHQJWukPmPo3d1fZQoaAZoCWgPQwgB2lazTiZiwJSGlFKUaBVNEwJoFkdAlbBoYWLxZ3V9lChoBmgJaA9DCLqEQ2/x4FDAlIaUUpRoFUvTaBZHQJWxf7FbVz91fZQoaAZoCWgPQwhA3UCBd3FowJSGlFKUaBVNsgJoFkdAlbUJ4W1twnV9lChoBmgJaA9DCEYjn1c8tVDAlIaUUpRoFU3oA2gWR0CVtzYuCf6HdX2UKGgGaAloD0MI8zgM5q+QOMCUhpRSlGgVTegDaBZHQJW3kVWS2Yx1fZQoaAZoCWgPQwj5ZMVwdWpHwJSGlFKUaBVN6ANoFkdAlboUWEbo83V9lChoBmgJaA9DCBU2A1wQnmDAlIaUUpRoFU1ZAWgWR0CVuzxQzk6tdX2UKGgGaAloD0MIogxVMZWXYsCUhpRSlGgVTSACaBZHQJW9bwpe/pN1fZQoaAZoCWgPQwhXQQx07RBgwJSGlFKUaBVNvwFoFkdAlce4f0VafXV9lChoBmgJaA9DCApI+x9gA2TAlIaUUpRoFU0UAmgWR0CVytTkhib2dX2UKGgGaAloD0MI6KViY17DVsCUhpRSlGgVTScBaBZHQJXQfOkcjqx1fZQoaAZoCWgPQwjL2xFOi0RjwJSGlFKUaBVNwQFoFkdAldDjD4xk/nV9lChoBmgJaA9DCCeiX1s/D2HAlIaUUpRoFU3+AWgWR0CV0iO3lS0jdX2UKGgGaAloD0MI98ySADUdLsCUhpRSlGgVTegDaBZHQJXUpFpfx+d1fZQoaAZoCWgPQwjBO/n02CVYwJSGlFKUaBVNuAFoFkdAldukzbeuWHV9lChoBmgJaA9DCFx1HaqprmPAlIaUUpRoFU3tAWgWR0CV3DVbzK9xdX2UKGgGaAloD0MIVOBkGziRa8CUhpRSlGgVTY4CaBZHQJXf9vn8sMB1fZQoaAZoCWgPQwgogc05eKNdwJSGlFKUaBVNNAJoFkdAleL/Xbuc+nV9lChoBmgJaA9DCKGCwwsiLm3AlIaUUpRoFU2qA2gWR0CV5jXXyy2QdX2UKGgGaAloD0MIogkUsYjjXcCUhpRSlGgVTU4BaBZHQJXoTDiwSrZ1fZQoaAZoCWgPQwjtYS8UMFFhwJSGlFKUaBVN8AJoFkdAlfEJ2t+1B3V9lChoBmgJaA9DCOKrHcU5bWjAlIaUUpRoFU1qA2gWR0CV9DBAOavzdX2UKGgGaAloD0MIBCDu6lXzUkCUhpRSlGgVTagDaBZHQJX73w6QvHt1fZQoaAZoCWgPQwi7l/vkKEAQQJSGlFKUaBVN6ANoFkdAlgcl/YraunV9lChoBmgJaA9DCKGEmbZ/6VnAlIaUUpRoFU2EAWgWR0CWCfwqRU3odX2UKGgGaAloD0MIj+Gxn8WDV8CUhpRSlGgVTfUBaBZHQJYNdoGpuMx1fZQoaAZoCWgPQwgt7dRcbq5RwJSGlFKUaBVNGwFoFkdAlg/OERJ2+3V9lChoBmgJaA9DCIDW/PjL/WDAlIaUUpRoFU2JAmgWR0CWEjlrdnCgdX2UKGgGaAloD0MIGHlZEws5acCUhpRSlGgVTcoDaBZHQJYXIqWkadd1fZQoaAZoCWgPQwiTqu0m+PdYQJSGlFKUaBVN1gJoFkdAlhjpvtMPBnV9lChoBmgJaA9DCDdV98jmDFPAlIaUUpRoFU3oA2gWR0CWKW3WFvhqdX2UKGgGaAloD0MIlX8tr1zAZcCUhpRSlGgVTXADaBZHQJYslAkcCHR1fZQoaAZoCWgPQwhfCaTELhpnwJSGlFKUaBVNNgNoFkdAli9k6PsAvXV9lChoBmgJaA9DCE/nilJCvFbAlIaUUpRoFU1pAWgWR0CWL7h8pkPMdX2UKGgGaAloD0MI2uIan8ncTsCUhpRSlGgVTegDaBZHQJY0d2yLQ5Z1fZQoaAZoCWgPQwjYuP5dnyJpwJSGlFKUaBVNDgNoFkdAljbQfIS13XV9lChoBmgJaA9DCHo57L5jYFjAlIaUUpRoFU15AWgWR0CWPItYB/7SdX2UKGgGaAloD0MIxcVRuYnSSsCUhpRSlGgVTegDaBZHQJZFOMdcSoR1fZQoaAZoCWgPQwjrNxPThZNpwJSGlFKUaBVNkQNoFkdAlkYj9KmKqHV9lChoBmgJaA9DCNZW7C+7l17AlIaUUpRoFU2UAmgWR0CWU2qvNeMRdX2UKGgGaAloD0MIwTi4dMyXcMCUhpRSlGgVTUcDaBZHQJZTpTdcjaB1fZQoaAZoCWgPQwh7FK5H4TRAwJSGlFKUaBVN6ANoFkdAll2t1ZDArXV9lChoBmgJaA9DCA3hmGVPEVbAlIaUUpRoFU2xAWgWR0CWYjSc9W6tdX2UKGgGaAloD0MIICQLmMD0WcCUhpRSlGgVTRwCaBZHQJZinnfVI7N1fZQoaAZoCWgPQwgFTraBO21RQJSGlFKUaBVN0QJoFkdAlmRVcD8tPHV9lChoBmgJaA9DCM/4vrhU6mbAlIaUUpRoFU38AWgWR0CWZUBtk4FSdX2UKGgGaAloD0MI6E6w/zqzV8CUhpRSlGgVTX0BaBZHQJZmVZzPrv91fZQoaAZoCWgPQwja5Vsf1n1VwJSGlFKUaBVNZgFoFkdAlmy+hGpdbHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 14844, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f566d2d7e60>", "add": "<function ReplayBuffer.add at 0x7f566d2d7ef0>", "sample": "<function ReplayBuffer.sample at 0x7f566d2d7f80>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f566d2db050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f566d32cc60>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 625, "_n_calls": 62500, "max_grad_norm": 10, "exploration_rate": 0.05, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar_lander_dqn_v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:472bca207f1adf83178f5928fea74999a17327c1d05c25abbc195da49540d8dc
|
3 |
+
size 108661
|
lunar_lander_dqn_v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
lunar_lander_dqn_v1/data
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7f566d284320>",
|
8 |
+
"_build": "<function DQNPolicy._build at 0x7f566d2843b0>",
|
9 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7f566d284440>",
|
10 |
+
"forward": "<function DQNPolicy.forward at 0x7f566d2844d0>",
|
11 |
+
"_predict": "<function DQNPolicy._predict at 0x7f566d284560>",
|
12 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f566d2845f0>",
|
13 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f566d284680>",
|
14 |
+
"__abstractmethods__": "frozenset()",
|
15 |
+
"_abc_impl": "<_abc_data object at 0x7f566d2e8d80>"
|
16 |
+
},
|
17 |
+
"verbose": 1,
|
18 |
+
"policy_kwargs": {},
|
19 |
+
"observation_space": {
|
20 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
21 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
22 |
+
"dtype": "float32",
|
23 |
+
"_shape": [
|
24 |
+
8
|
25 |
+
],
|
26 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
27 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
28 |
+
"bounded_below": "[False False False False False False False False]",
|
29 |
+
"bounded_above": "[False False False False False False False False]",
|
30 |
+
"_np_random": null
|
31 |
+
},
|
32 |
+
"action_space": {
|
33 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
34 |
+
":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAABD5eHJI9MvFaTes9CI9s2EpD8ry5XNYns+GQNHmP0LSPS61GAlDWsu6+R2wYSJ043ULYnbbivnWcDFhvxS+/n26G71mrM4Wx22CNIbiBBwvs59FbLJXAcs7PMa6c8h3AuwfsmQ8sMtIZ8QASXWdVshLdHUCmDCsfPuEGa/b1qefRLJhUW+5uoPz7mzdocg6odg/h/iGJBzL/LZIgIgq+D2l4szt2MfLxtRWTR0Sw06ELoV+q1M7i98BabvxFRJGMQXUonzt210C9Fb8+bnFN4MDNGBLLG5uZhhou6slqV5DXTudQUJwbRNRWL7hH9SzUPyVRfwlcr1k+J+l/5FO5F9Q2sv+HTJ+lvn0onLhjJCZBOINXhE7wsXdaqI85Ecj2SNV10Co6461XKidXCHbmrI369fHma8A190EzYY2uqV6dJqgyeq4lbMhN2YPRkgfXyILs+tyUXiZ7oQziv2KerKNe3bh8qw1J3JEVwc2YzccwBcvCPC8tds9sosK4pVsqbjBPfd3pP3cn6KYwfeNdOSZRfG90R75uJNY+rUwv+fq1s2OuHGEU7sqlmqJ+C7s1LWvm7NVpr4RXiUjYo4E1vqL8xoExAn8fubZgMXLJ5BPKl9Q7+yMh94unPvmmd7TSdCmM/aFonNJyrnK/ubnjJ5arfLDyvlv6AE/Wzw2MqAuDhP1RLITMoCGqsUGy2e+mTMj4KMtBhEItLwNF/82CfA0mwQNAneFNQF2GrURv/zCA63SxyAW4BNzU+idJmaa2HLpAabdquUVFT5SvGHEWVotFl39xUWaOv5GER7NnLgc0UIIfeKkc50fSobnA/OW7/HjE0HQUvbV3Z6VDypkp0mtyu6TJ5rpP8StrXpXqI/RifEJHctM+i5oMjtYsSoz+hhZezhfGndt7d0RtNzlpgCfXVfd5b7f/fGcXI1JhLu8kgSBYHf/ESgAGNTqSMPSYlhlRWqmBK8DGsmL6mxMnnyHmSjkfpxTquHA87N5u2wTGzAhnSqQgZhTu/LPCzMzb/TpZEby4B9v+4bkzmuNGfDXa7OtwveG6LKnIaZF/ngjG5Xruwah8soetczc0CGRgEaxLDGm9rltQSur1m//frK8jAnTlV+1C4vlhAKTjp47HyniLq4Sk7Q74v/1T3AGMRFAWbcvdn+aK5htOzuclM0WS+7TB4I5wQEQKu213wH8LyX95A5RKPwzqAtslNBHA00Zliek6L0tPxLWh2Aa4GecwNY4sXn9fXl8UVkWXt6HnecezVxdYITbIUl1uiu6HlOB5Cev+34PtM2koB9ssQILh9t9ob+eplEf4GuuCX0q2PjbzdfFu01c6WG6pZ5e+2DWnWdVb1TX8UV0sQeuuOBhBEkIYJ1fclZMObV2gDURNWo14xnjrJZuZWHKTAIJ7QE1zTV7eenfNiww8EwslmHHUh08vIgyy7uYiElRJ2u1nSiW2a6nTWpV1lD/qPp7hXoP7tMh827aKpdJYakLFai9SAc2bI2HuTGAw8x9oBLNU5JhiSNWOA3pfw+OLPWIAb5xWjI+Ca7Tg5AaAO8FE3Q+Onv9gRQTT6R/JER85wD3EP562VumrViQWLJUoem0+aKKkFzYaDclS1EW38aepSvMpZ+uxYLmXNOXvG5Sk0a3T/x5N+qnPUz6P55Tbx+wUxUy347iSmy5bAH27j+8L8/oAfPlzpyGqMfAI+ftaIGku/L2TD2+pjMiys3fC2mwMDjlc5i9khyAxpjJ5E7WJnEqkZV0YP5+g84KlvKFZQSYTYYVHdpjF24DmLhnpbf76udeHgC/6ZmT8GbkgG6tXKTpKSlL/47sI/3hwOclfJlqEn8JXdRqrdMbM1pJy+ZYdpn8ZqOjZVnmfw4nt9AoGtbwtqHzpnx73SOzXGESgxfn6CLD//dEd11Sd3srQqE1IlLPSj4GSTDrQYXki2c4ja5Fstywrd3Gt+/yUxGM3TRoJgc9R6xjtaNUh0FMjFK0mP1b9Bg6dNfRFybQYiv3ujiiNdsq40p6ApVDIIjcEJZhfbIB7QTxCRIKPXyV0g527hkHRbxqYa/7bYdNnFSs5JI4H5yyGI5T6DLoJOQSyUfCXHLEa9UQq6+b4akFc6Q49udNO28f3szDAcg0fcqBDVF/7a0V6Udxvhka6lDhLgWjHaTNCtUBnKZNsMQr7JuqDp9XYg1qLg/MV+wTgzUMy25qeIAZ9pfBGCsKfqiZ7MEuk18FyaS/kZwlM8vNleJ8n+UTErPnvqjgWhjwOXMYDQSsTIn0POHSGk9GiLk0xMVmA0eMdP/Z4ft5QpRhJ0e5dSF8uNY/jI1YyPwlFLcgYVa9axPm4MNxL2FWMB+cDHtkqcBj46KoDwtIZ3jNPrEdOgIskStYJhxu2rJv1UTr7NJ1UUZIFsf24Wl3JVPcZUhdD3Nmdqv7a94jyBLWWNdOuGPiJLCv4rhE/GiO85dGYb6iabCRflSER7Yp6NL/VfUFX8P+zRrZQCvuzE0rqMq2b3O/Cx0XkBoRT3OcKNl1nirKTaohnwVyPjgRrPHjhkMxAyHsymYm0QH1kzz6PeBEe6wsBVFD1iLKqHbCRhqyzSrSY6J35ngEENiqLbUFMgyLzuc1siO2L40wgXc9e75sJf/nPymTENJ67RGW2o/NuOD4rGfNk82gaZKa82WQaEdAU4ansLCe4eYYJea3WPknoCqlrsZyiyyvAx6hWX7lS4r6lbcRDRL2uV3chEO7KiH10FpfNFfGpWojCMJaFkr4DPpJ7GBkTqwVMJGNEypsjEmRFir2D8FGtVJvdpyUwULEgPpucHHiy/N/P+eSAm6xGpIi5pLqL3xCe2slcV72N5ky1ti+tdDjxtJCJk9TVsIpVQlNMpk+kvAbSrDzlZJsta2zlhoq6rVQJScg38C0MLXCax6sI99lXjp5/vDDUgMJL8RJeOcqkm4K517q6yq2k7ZDjYxuXV2+j1rsolfEeX/SMr4OpLx0EjfHDmQUfrlbkSRmjpMV43sCTPHAoaeG1FlIEYIZ7dh2p1+VNzvlHTeifuCjPLHIjZEPsRNrRhCHboFJ5jlkqd4294j2TwPjXy9ojvtPcs2BpsGL39tSWctRr6fyUAd0aGnk4CU9ZnZMOEYjw8rhdxc5Ze5cGTCJMD+8EtGkkQHCr9wD6WYbBXvQk0OYhrzjAKIwQpVAME1DRrPlEKPqFX/y70qehThDRuATEkvWcgtLV0Ko34At3gI7Z1epVWCxfdIiTRXPahJe3XPacudNjed2UgK/pya5r5B7cHyXOwkdfLnV9wHtLUTnNOPrimmx20wxygo9lDnw/PqxAd24PS8oMwXy7zGGVlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLYHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
35 |
+
"n": 4,
|
36 |
+
"_shape": [],
|
37 |
+
"dtype": "int64",
|
38 |
+
"_np_random": "RandomState(MT19937)"
|
39 |
+
},
|
40 |
+
"n_envs": 16,
|
41 |
+
"num_timesteps": 1000000,
|
42 |
+
"_total_timesteps": 1000000,
|
43 |
+
"_num_timesteps_at_start": 0,
|
44 |
+
"seed": null,
|
45 |
+
"action_noise": null,
|
46 |
+
"start_time": 1652716695.5003893,
|
47 |
+
"learning_rate": 0.0001,
|
48 |
+
"tensorboard_log": null,
|
49 |
+
"lr_schedule": {
|
50 |
+
":type:": "<class 'function'>",
|
51 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
52 |
+
},
|
53 |
+
"_last_obs": {
|
54 |
+
":type:": "<class 'numpy.ndarray'>",
|
55 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANUCFb9yZI8/cGneviApsL0XzPC9WivyOwAAAAAAAAAAXaHGPpy0Bz1c2LA83vwlPSpXcz6Qlfi9AACAPwAAgD9Ly8O+YVYePzNjZL7ADKi7tFKJvAmMKbwAAAAAAAAAAPNTaT5YcZY+nLVAOn6BiLxtwkM7TPaJuwAAAAAAAAAAS/W4vojC4T6uo0S+2RwjvW7wDDz7sXQ8AAAAAAAAAADtBrk+RvUHP6PScj3u9Vq9nHOMOUoHErsAAAAAAAAAAGZQrz25iHs/QMWGPZHBib2SYEO8m3XuugAAAAAAAAAA2gZLP993Jj/WGfk9TOQMvu9JuLySWVm9AAAAAAAAAACPAS2/3KSRP7Qzlr5QwtW9nVebvWJ5DD0AAAAAAAAAAC4YR79XMGE/Qr6FvnbzH7749yS9ljccPQAAAAAAAAAAs4jLPWdunT/Zh4g9bfiavTDfiLyd97I7AAAAAAAAAADrVX6/VH3BPkKBkL41FDG+oqDaOz5UFTsAAAAAAAAAAG0mBz6xJ6k/o87UPjnpB74PF0U9iLRvPQAAAAAAAAAAZrsrPzaXlj42XNc9IKqjvailZjxU9Ke8AAAAAAAAAACeuhG/m8ttP6fFxb6NzfC9uXKhvVOx2jsAAAAAAAAAAMbZWT6u3Jc/bY70PX7unb1JH4W7JeU3vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
56 |
+
},
|
57 |
+
"_last_episode_starts": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_original_obs": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGPmE7/jo48/xr3hvhONAb7TjfG9Lb1OPAAAAAAAAAAA4IzGPokPBD0upLA8QWH8PASOeT4VvLi9AACAPwAAgD9FpsK+710eP0vOXb4yKTi9mxWFvEVkJbsAAAAAAAAAAJpSaT6AopY+hBJLPE/fV71BjlE7Rm7fOwAAAAAAAAAAlvq3vvc34j66EU2+LFlYvVa0ADxY9NQ7AAAAAAAAAABgubg+GUQIP6PScj3Sd9u81tzGOcAHErsAAAAAAAAAAOb3rT3p63s/dImQPctoj70R40G8gmpZOwAAAAAAAAAA5rhKP7NCJz/YGfk9RCvjvbyNoryYWVm9AAAAAAAAAABwQiy/4fGRPwpMmb5M2/69pdqevboWCj0AAAAAAAAAAEJuRr+9FmI/PiKKvq3qA76Kxyy9etqUPQAAAAAAAAAAwCnKPTKmnT/SrJM9cPu5veIbi7yG50A8AAAAAAAAAAAHnX2/UnvDPqWwjb6nsjS+6+TWOz3a7zsAAAAAAAAAABrdAj56iak/bq/QPhW4Hr7UGjk94X1CPQAAAAAAAAAAKncrP+2Clz4KBNI9Dr3ZvU9xdzxaSca8AAAAAAAAAACyvRC/AnluP9gqxL7v8gG+rSGivf0ZYzwAAAAAAAAAAECiWD6IFZg/P/gBPimYw70pd2W7RSpzuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_episode_num": 2437,
|
66 |
+
"use_sde": false,
|
67 |
+
"sde_sample_freq": -1,
|
68 |
+
"_current_progress_remaining": 0.0,
|
69 |
+
"ep_info_buffer": {
|
70 |
+
":type:": "<class 'collections.deque'>",
|
71 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGY9SCU96ZcCUhpRSlIwBbJRNngOMAXSUR0CU2Ka4+bExdX2UKGgGaAloD0MIA0GADB1HXcCUhpRSlGgVTY8BaBZHQJTaZ4iX6ZZ1fZQoaAZoCWgPQwge3941aEdiwJSGlFKUaBVNAANoFkdAlNzdDYywfXV9lChoBmgJaA9DCEM8Ei9PLUPAlIaUUpRoFU3oA2gWR0CU4BWKMvRJdX2UKGgGaAloD0MIE0VI3c4ZUcCUhpRSlGgVTegDaBZHQJTiHFkxyn11fZQoaAZoCWgPQwjTaHIxBqFkwJSGlFKUaBVNrQJoFkdAlOJu2RaHK3V9lChoBmgJaA9DCKD7cma7z2/AlIaUUpRoFU08A2gWR0CU5PB5ooNNdX2UKGgGaAloD0MIqG4u/rYtYsCUhpRSlGgVTbcBaBZHQJTt104iosJ1fZQoaAZoCWgPQwggXtcv2BFFwJSGlFKUaBVN6ANoFkdAlPAiPp6hQHV9lChoBmgJaA9DCP8kPneCIlHAlIaUUpRoFU3oA2gWR0CU8oLc9GI9dX2UKGgGaAloD0MIA9AoXfpqXcCUhpRSlGgVTUYCaBZHQJT0EZ/CqId1fZQoaAZoCWgPQwgOEqJ8QQxSQJSGlFKUaBVNrwNoFkdAlPYLZvkzXXV9lChoBmgJaA9DCJI81/fhIV7AlIaUUpRoFU1fAmgWR0CU/fTzd1uBdX2UKGgGaAloD0MIOBPThVinT8CUhpRSlGgVTegDaBZHQJUFV4Z/CqJ1fZQoaAZoCWgPQwhnYU87/HlFwJSGlFKUaBVN6ANoFkdAlQrrzPKMenV9lChoBmgJaA9DCJIE4Qood17AlIaUUpRoFU1OAmgWR0CVCyB3Roh7dX2UKGgGaAloD0MIxhhYx/HAZ8CUhpRSlGgVTWoCaBZHQJULeaAnUlR1fZQoaAZoCWgPQwiJ0XMLXT5SwJSGlFKUaBVNKgFoFkdAlRp9O6/Zd3V9lChoBmgJaA9DCJ9W0R+aAVjAlIaUUpRoFU3UAWgWR0CVHZcoYvWZdX2UKGgGaAloD0MIOwDirl5gVsCUhpRSlGgVTV8BaBZHQJUqTL4etCB1fZQoaAZoCWgPQwhEp+fdWJZjwJSGlFKUaBVNOwNoFkdAlTRpiVjZtnV9lChoBmgJaA9DCHI2HQFcsGfAlIaUUpRoFU3TAmgWR0CVNjzmOlwcdX2UKGgGaAloD0MIfHxCdt6uScCUhpRSlGgVTegDaBZHQJU7U8vEjxF1fZQoaAZoCWgPQwhvL2mM1hlNwJSGlFKUaBVN6ANoFkdAlT4l76YVqXV9lChoBmgJaA9DCBHGT+Peh1DAlIaUUpRoFU3oA2gWR0CVQaOj7ALzdX2UKGgGaAloD0MIKv7viApvTsCUhpRSlGgVTegDaBZHQJVD/ADaGpN1fZQoaAZoCWgPQwj9h/Tb13EywJSGlFKUaBVN6ANoFkdAlURaVlf7anV9lChoBmgJaA9DCPpjWptGAmjAlIaUUpRoFU34AmgWR0CVRV7Rv3rVdX2UKGgGaAloD0MIOSaL+492UMCUhpRSlGgVTegDaBZHQJVT9cmjTKF1fZQoaAZoCWgPQwjlettMhbdZwJSGlFKUaBVNzwJoFkdAlVZvMB6rvXV9lChoBmgJaA9DCEnyXN8H4GbAlIaUUpRoFU3YA2gWR0CVVvAIppevdX2UKGgGaAloD0MI9s5oqxJNZcCUhpRSlGgVTfwCaBZHQJVapDeCTU11fZQoaAZoCWgPQwjKMVncf9FvwJSGlFKUaBVNIwNoFkdAlV40NOM2nHV9lChoBmgJaA9DCFBSYAFMF1LAlIaUUpRoFU2pAWgWR0CVY+YWLxZudX2UKGgGaAloD0MIQZ5dvnUFY8CUhpRSlGgVTT8CaBZHQJVwrag26091fZQoaAZoCWgPQwjbvkf99U9gwJSGlFKUaBVNRwJoFkdAlXy5l8PWhHV9lChoBmgJaA9DCF5nQ/6Zw0RAlIaUUpRoFU2qA2gWR0CVf0z67/XHdX2UKGgGaAloD0MIfjhIiPIIVMCUhpRSlGgVTegDaBZHQJWDbHS4OMF1fZQoaAZoCWgPQwj1L0llikNLQJSGlFKUaBVNqQNoFkdAlYtbWVeKK3V9lChoBmgJaA9DCP5hS4+mTFrAlIaUUpRoFU0vAmgWR0CVjUlVcUuddX2UKGgGaAloD0MIlKMAUbB2ZsCUhpRSlGgVTYsDaBZHQJWQS6WgOBl1fZQoaAZoCWgPQwgXSian9kJkwJSGlFKUaBVNGwNoFkdAlZKoFmnO0XV9lChoBmgJaA9DCCRE+YIWzFTAlIaUUpRoFU3oA2gWR0CVmyulGgBcdX2UKGgGaAloD0MIP6cgPxuYYMCUhpRSlGgVTXcCaBZHQJWgStlqagF1fZQoaAZoCWgPQwgr+64IflNrwJSGlFKUaBVNowNoFkdAlaB/IS13MnV9lChoBmgJaA9DCM8u3/qwPVzAlIaUUpRoFU03AmgWR0CVoKzfaYeDdX2UKGgGaAloD0MIdbFppRC2SsCUhpRSlGgVTegDaBZHQJWjz1tfoid1fZQoaAZoCWgPQwhWtg95yylXwJSGlFKUaBVNcgFoFkdAladh7mdRSHV9lChoBmgJaA9DCDqvsUtULl3AlIaUUpRoFU1lAWgWR0CVrFqn3ta7dX2UKGgGaAloD0MIaLCp86jaUcCUhpRSlGgVS5xoFkdAla04IKMNt3V9lChoBmgJaA9DCLsJvmn6P1vAlIaUUpRoFU0tAWgWR0CVrX/0/W1/dX2UKGgGaAloD0MIsoUgB6V9YMCUhpRSlGgVTWwBaBZHQJWukPmPo3d1fZQoaAZoCWgPQwgB2lazTiZiwJSGlFKUaBVNEwJoFkdAlbBoYWLxZ3V9lChoBmgJaA9DCLqEQ2/x4FDAlIaUUpRoFUvTaBZHQJWxf7FbVz91fZQoaAZoCWgPQwhA3UCBd3FowJSGlFKUaBVNsgJoFkdAlbUJ4W1twnV9lChoBmgJaA9DCEYjn1c8tVDAlIaUUpRoFU3oA2gWR0CVtzYuCf6HdX2UKGgGaAloD0MI8zgM5q+QOMCUhpRSlGgVTegDaBZHQJW3kVWS2Yx1fZQoaAZoCWgPQwj5ZMVwdWpHwJSGlFKUaBVN6ANoFkdAlboUWEbo83V9lChoBmgJaA9DCBU2A1wQnmDAlIaUUpRoFU1ZAWgWR0CVuzxQzk6tdX2UKGgGaAloD0MIogxVMZWXYsCUhpRSlGgVTSACaBZHQJW9bwpe/pN1fZQoaAZoCWgPQwhXQQx07RBgwJSGlFKUaBVNvwFoFkdAlce4f0VafXV9lChoBmgJaA9DCApI+x9gA2TAlIaUUpRoFU0UAmgWR0CVytTkhib2dX2UKGgGaAloD0MI6KViY17DVsCUhpRSlGgVTScBaBZHQJXQfOkcjqx1fZQoaAZoCWgPQwjL2xFOi0RjwJSGlFKUaBVNwQFoFkdAldDjD4xk/nV9lChoBmgJaA9DCCeiX1s/D2HAlIaUUpRoFU3+AWgWR0CV0iO3lS0jdX2UKGgGaAloD0MI98ySADUdLsCUhpRSlGgVTegDaBZHQJXUpFpfx+d1fZQoaAZoCWgPQwjBO/n02CVYwJSGlFKUaBVNuAFoFkdAldukzbeuWHV9lChoBmgJaA9DCFx1HaqprmPAlIaUUpRoFU3tAWgWR0CV3DVbzK9xdX2UKGgGaAloD0MIVOBkGziRa8CUhpRSlGgVTY4CaBZHQJXf9vn8sMB1fZQoaAZoCWgPQwgogc05eKNdwJSGlFKUaBVNNAJoFkdAleL/Xbuc+nV9lChoBmgJaA9DCKGCwwsiLm3AlIaUUpRoFU2qA2gWR0CV5jXXyy2QdX2UKGgGaAloD0MIogkUsYjjXcCUhpRSlGgVTU4BaBZHQJXoTDiwSrZ1fZQoaAZoCWgPQwjtYS8UMFFhwJSGlFKUaBVN8AJoFkdAlfEJ2t+1B3V9lChoBmgJaA9DCOKrHcU5bWjAlIaUUpRoFU1qA2gWR0CV9DBAOavzdX2UKGgGaAloD0MIBCDu6lXzUkCUhpRSlGgVTagDaBZHQJX73w6QvHt1fZQoaAZoCWgPQwi7l/vkKEAQQJSGlFKUaBVN6ANoFkdAlgcl/YraunV9lChoBmgJaA9DCKGEmbZ/6VnAlIaUUpRoFU2EAWgWR0CWCfwqRU3odX2UKGgGaAloD0MIj+Gxn8WDV8CUhpRSlGgVTfUBaBZHQJYNdoGpuMx1fZQoaAZoCWgPQwgt7dRcbq5RwJSGlFKUaBVNGwFoFkdAlg/OERJ2+3V9lChoBmgJaA9DCIDW/PjL/WDAlIaUUpRoFU2JAmgWR0CWEjlrdnCgdX2UKGgGaAloD0MIGHlZEws5acCUhpRSlGgVTcoDaBZHQJYXIqWkadd1fZQoaAZoCWgPQwiTqu0m+PdYQJSGlFKUaBVN1gJoFkdAlhjpvtMPBnV9lChoBmgJaA9DCDdV98jmDFPAlIaUUpRoFU3oA2gWR0CWKW3WFvhqdX2UKGgGaAloD0MIlX8tr1zAZcCUhpRSlGgVTXADaBZHQJYslAkcCHR1fZQoaAZoCWgPQwhfCaTELhpnwJSGlFKUaBVNNgNoFkdAli9k6PsAvXV9lChoBmgJaA9DCE/nilJCvFbAlIaUUpRoFU1pAWgWR0CWL7h8pkPMdX2UKGgGaAloD0MI2uIan8ncTsCUhpRSlGgVTegDaBZHQJY0d2yLQ5Z1fZQoaAZoCWgPQwjYuP5dnyJpwJSGlFKUaBVNDgNoFkdAljbQfIS13XV9lChoBmgJaA9DCHo57L5jYFjAlIaUUpRoFU15AWgWR0CWPItYB/7SdX2UKGgGaAloD0MIxcVRuYnSSsCUhpRSlGgVTegDaBZHQJZFOMdcSoR1fZQoaAZoCWgPQwjrNxPThZNpwJSGlFKUaBVNkQNoFkdAlkYj9KmKqHV9lChoBmgJaA9DCNZW7C+7l17AlIaUUpRoFU2UAmgWR0CWU2qvNeMRdX2UKGgGaAloD0MIwTi4dMyXcMCUhpRSlGgVTUcDaBZHQJZTpTdcjaB1fZQoaAZoCWgPQwh7FK5H4TRAwJSGlFKUaBVN6ANoFkdAll2t1ZDArXV9lChoBmgJaA9DCA3hmGVPEVbAlIaUUpRoFU2xAWgWR0CWYjSc9W6tdX2UKGgGaAloD0MIICQLmMD0WcCUhpRSlGgVTRwCaBZHQJZinnfVI7N1fZQoaAZoCWgPQwgFTraBO21RQJSGlFKUaBVN0QJoFkdAlmRVcD8tPHV9lChoBmgJaA9DCM/4vrhU6mbAlIaUUpRoFU38AWgWR0CWZUBtk4FSdX2UKGgGaAloD0MI6E6w/zqzV8CUhpRSlGgVTX0BaBZHQJZmVZzPrv91fZQoaAZoCWgPQwja5Vsf1n1VwJSGlFKUaBVNZgFoFkdAlmy+hGpdbHVlLg=="
|
72 |
+
},
|
73 |
+
"ep_success_buffer": {
|
74 |
+
":type:": "<class 'collections.deque'>",
|
75 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
76 |
+
},
|
77 |
+
"_n_updates": 14844,
|
78 |
+
"buffer_size": 1000000,
|
79 |
+
"batch_size": 32,
|
80 |
+
"learning_starts": 50000,
|
81 |
+
"tau": 1.0,
|
82 |
+
"gamma": 0.99,
|
83 |
+
"gradient_steps": 1,
|
84 |
+
"optimize_memory_usage": false,
|
85 |
+
"replay_buffer_class": {
|
86 |
+
":type:": "<class 'abc.ABCMeta'>",
|
87 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
88 |
+
"__module__": "stable_baselines3.common.buffers",
|
89 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
90 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f566d2d7e60>",
|
91 |
+
"add": "<function ReplayBuffer.add at 0x7f566d2d7ef0>",
|
92 |
+
"sample": "<function ReplayBuffer.sample at 0x7f566d2d7f80>",
|
93 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f566d2db050>",
|
94 |
+
"__abstractmethods__": "frozenset()",
|
95 |
+
"_abc_impl": "<_abc_data object at 0x7f566d32cc60>"
|
96 |
+
},
|
97 |
+
"replay_buffer_kwargs": {},
|
98 |
+
"train_freq": {
|
99 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
100 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
101 |
+
},
|
102 |
+
"actor": null,
|
103 |
+
"use_sde_at_warmup": false,
|
104 |
+
"exploration_initial_eps": 1.0,
|
105 |
+
"exploration_final_eps": 0.05,
|
106 |
+
"exploration_fraction": 0.1,
|
107 |
+
"target_update_interval": 625,
|
108 |
+
"_n_calls": 62500,
|
109 |
+
"max_grad_norm": 10,
|
110 |
+
"exploration_rate": 0.05,
|
111 |
+
"exploration_schedule": {
|
112 |
+
":type:": "<class 'function'>",
|
113 |
+
":serialized:": "gAWVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
114 |
+
}
|
115 |
+
}
|
lunar_lander_dqn_v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0e624423a010153539d8a04712e691a17e03c18e5f18c6a1b0b3afb3bc480dc
|
3 |
+
size 43265
|
lunar_lander_dqn_v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d9fe0ae92bde77737df655d43bd04579a0c28509c60c41cacc72beaf0222ec5
|
3 |
+
size 44033
|
lunar_lander_dqn_v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_lander_dqn_v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0bb8d7573727739de34860e67a7348b87d8ea8ee23b9c01301f6b63d0d171a2
|
3 |
+
size 244411
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -123.02195335792821, "std_reward": 62.233437684796236, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-16T16:26:52.909848"}
|