File size: 2,394 Bytes
83e5230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f87f11a
83e5230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%load_ext autoreload\n",
    "%autoreload 2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import jax\n",
    "import jax.numpy as jnp\n",
    "import pickle\n",
    "from atari import AtariEnv\n",
    "from networks import QNetwork\n",
    "\n",
    "# ------- START TO MODIFY ------- #\n",
    "ALGO = \"eaudedqn\" # choose between eaudedqn, polyprunedqn, dqn, eaudecql, polyprunecql, and cql.\n",
    "GAME = \"BeamRider\" # choose between BeamRider, MsPacman, Qbert, Pong, Enduro, SpaceInvaders, Assault, CrazyClimber, Boxing, and VideoPinball.\n",
    "FEATURE_SIZE = 32 # choose between 32, 512, and 2048.\n",
    "NETWORK_SEED = 1 # choose between 1, 2, 3, 4, and 5.\n",
    "EVALUATION_SEED = 0\n",
    "HORIZON = 27000\n",
    "EPSILON = 0.01\n",
    "RECORD_VIDEO = False\n",
    "# ------- END TO MODIFY ------- #\n",
    "\n",
    "params_path = f\"models/{GAME}/{ALGO}/feature_size_{FEATURE_SIZE}_seed_{NETWORK_SEED}\"\n",
    "\n",
    "env = AtariEnv(GAME)\n",
    "\n",
    "q = QNetwork([32, 64, 64, FEATURE_SIZE], env.n_actions)\n",
    "\n",
    "with open(params_path, \"rb\") as handle:\n",
    "    q_params = pickle.load(handle)\n",
    "\n",
    "return_, absorbing = env.evaluate_one_simulation(\n",
    "    q, q_params, HORIZON, EPSILON, jax.random.PRNGKey(EVALUATION_SEED), params_path + \"_eval\" if RECORD_VIDEO else None\n",
    ")\n",
    "print(\"Undiscounted return:\", return_)\n",
    "print(\"N steps\", env.n_steps, \"; Horizon\", HORIZON, \"; Absorbing\", absorbing)\n",
    "non_zeros = sum(jax.tree.leaves(jax.tree.map(jnp.count_nonzero, q_params)))\n",
    "n_params = sum(jax.tree.leaves(jax.tree.map(jnp.size, q_params)))\n",
    "print(\"Spartity level:\", (1 - jnp.float32(non_zeros) / jnp.float32(n_params)))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "env",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}