TheBloke commited on
Commit
c831c0f
·
1 Parent(s): 9ee5441

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -1
README.md CHANGED
@@ -38,6 +38,7 @@ This repo contains GGML format model files for [Mikael110's Llama2 70b Guanaco Q
38
  CUDA GPU acceleration is now available for Llama 2 70B GGML files. Metal acceleration (macOS) is not yet available. I haven't tested AMD acceleration - let me know if it owrks. The following clients/libraries are known to work with these files, including with CUDA GPU acceleration:
39
  * [llama.cpp](https://github.com/ggerganov/llama.cpp), commit `e76d630` and later.
40
  * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI.
 
41
  * [KoboldCpp](https://github.com/LostRuins/koboldcpp), version 1.37 and later. A powerful GGML web UI, especially good for story telling.
42
  * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), version 0.1.77 and later. A Python library with LangChain support, and OpenAI-compatible API server.
43
 
@@ -97,8 +98,37 @@ Refer to the Provided Files table below to see what files use which methods, and
97
  | [llama-2-70b-guanaco-qlora.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/llama-2-70b-Guanaco-QLoRA-GGML/blob/main/llama-2-70b-guanaco-qlora.ggmlv3.q5_0.bin) | q5_0 | 5 | 47.46 GB| 49.96 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
98
  | [llama-2-70b-guanaco-qlora.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/llama-2-70b-Guanaco-QLoRA-GGML/blob/main/llama-2-70b-guanaco-qlora.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 48.75 GB| 51.25 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
99
  | [llama-2-70b-guanaco-qlora.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/llama-2-70b-Guanaco-QLoRA-GGML/blob/main/llama-2-70b-guanaco-qlora.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 47.46 GB| 49.96 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
 
 
 
100
 
101
- **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
 
103
  ## How to run in `llama.cpp`
104
 
 
38
  CUDA GPU acceleration is now available for Llama 2 70B GGML files. Metal acceleration (macOS) is not yet available. I haven't tested AMD acceleration - let me know if it owrks. The following clients/libraries are known to work with these files, including with CUDA GPU acceleration:
39
  * [llama.cpp](https://github.com/ggerganov/llama.cpp), commit `e76d630` and later.
40
  * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI.
41
+ * [LM Studio](https://lmstudio.ai/), a fully featured local GUI with GPU acceleration on both Windows and macOS (note that there is currently no macOS GPU acceleration for Llama 70B models.)
42
  * [KoboldCpp](https://github.com/LostRuins/koboldcpp), version 1.37 and later. A powerful GGML web UI, especially good for story telling.
43
  * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), version 0.1.77 and later. A Python library with LangChain support, and OpenAI-compatible API server.
44
 
 
98
  | [llama-2-70b-guanaco-qlora.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/llama-2-70b-Guanaco-QLoRA-GGML/blob/main/llama-2-70b-guanaco-qlora.ggmlv3.q5_0.bin) | q5_0 | 5 | 47.46 GB| 49.96 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
99
  | [llama-2-70b-guanaco-qlora.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/llama-2-70b-Guanaco-QLoRA-GGML/blob/main/llama-2-70b-guanaco-qlora.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 48.75 GB| 51.25 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
100
  | [llama-2-70b-guanaco-qlora.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/llama-2-70b-Guanaco-QLoRA-GGML/blob/main/llama-2-70b-guanaco-qlora.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 47.46 GB| 49.96 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
101
+ | llama-2-70b-guanaco-qlora.ggmlv3.q5_1.bin | q5_1 | 5 | 51.76 GB | 54.26 GB | Original quant method, 5-bit. Higher accuracy, slower inference than q5_0. |
102
+ | llama-2-70b-guanaco-qlora.ggmlv3.q6_K.bin | q6_K | 6 | 56.59 GB | 59.09 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
103
+ | llama-2-70b-guanaco-qlora.ggmlv3.q8_0.bin | q8_0 | 8 | 73.23 GB | 75.73 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
104
 
105
+ ### q5_1, q6_K and q8_0 files require expansion from archive
106
+
107
+ **Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the q6_K and q8_0 files as multi-part ZIP files. They are not compressed, they are just for storing a .bin file in two parts.
108
+
109
+ <details>
110
+ <summary>Click for instructions regarding q5_1, q6_K and q8_0 files</summary>
111
+
112
+ ### q5_1
113
+ Please download:
114
+ * `llama-2-70b-guanaco-qlora.ggmlv3.q5_1.zip`
115
+ * `llama-2-70b-guanaco-qlora.ggmlv3.q5_1.z01`
116
+
117
+ ### q6_K
118
+ Please download:
119
+ * `llama-2-70b-guanaco-qlora.ggmlv3.q6_K.zip`
120
+ * `llama-2-70b-guanaco-qlora.ggmlv3.q6_K.z01`
121
+
122
+ ### q8_0
123
+ Please download:
124
+ * `llama-2-70b-guanaco-qlora.ggmlv3.q8_0.zip`
125
+ * `llama-2-70b-guanaco-qlora.ggmlv3.q8_0.z01`
126
+
127
+ Then extract the .zip archive. This will will expand both parts automatically. On Linux I found I had to use `7zip` - the basic `unzip` tool did not work. Example:
128
+ ```
129
+ sudo apt update -y && sudo apt install 7zip
130
+ 7zz x llama-2-70b-guanaco-qlora.ggmlv3.q6_K.zip
131
+ </details>
132
 
133
  ## How to run in `llama.cpp`
134