Upload model
Browse files- README.md +199 -0
- config.json +15 -0
- configuration_retinanet.py +43 -0
- model.safetensors +3 -0
- modeling_retinanet.py +104 -0
README.md
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags: []
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
config.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"RetinaNetModelForObjectDetection"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_retinanet.RetinaNetConfig",
|
| 7 |
+
"AutoModelForObjectDetection": "modeling_retinanet.RetinaNetModelForObjectDetection"
|
| 8 |
+
},
|
| 9 |
+
"model_type": "retinanet",
|
| 10 |
+
"num_classes": null,
|
| 11 |
+
"pretrained": true,
|
| 12 |
+
"pretrained_backbone": false,
|
| 13 |
+
"torch_dtype": "float32",
|
| 14 |
+
"transformers_version": "4.49.0"
|
| 15 |
+
}
|
configuration_retinanet.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 2 |
+
from optimum.exporters.onnx.model_configs import ViTOnnxConfig
|
| 3 |
+
from typing import Optional, Dict
|
| 4 |
+
|
| 5 |
+
class RetinaNetConfig(PretrainedConfig):
|
| 6 |
+
model_type = 'retinanet'
|
| 7 |
+
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
pretrained: bool = False,
|
| 11 |
+
pretrained_backbone: bool = False,
|
| 12 |
+
num_classes: Optional[int] = None,
|
| 13 |
+
**kwargs
|
| 14 |
+
):
|
| 15 |
+
|
| 16 |
+
self.num_classes = num_classes
|
| 17 |
+
self.pretrained = pretrained
|
| 18 |
+
self.pretrained_backbone = pretrained_backbone
|
| 19 |
+
|
| 20 |
+
super().__init__(**kwargs)
|
| 21 |
+
|
| 22 |
+
class RetinaNetOnnxConfig(ViTOnnxConfig):
|
| 23 |
+
@property
|
| 24 |
+
def inputs(self) -> Dict[str, Dict[int, str]]:
|
| 25 |
+
return {
|
| 26 |
+
"pixel_values": {0: "batch_size", 1: "num_channels", 2: "height", 3: "width"},
|
| 27 |
+
"image_sizes": {0: "batch_size", 1: "image_size"}
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
@property
|
| 31 |
+
def outputs(self) -> Dict[str, Dict[int, str]]:
|
| 32 |
+
common_outputs = super().outputs
|
| 33 |
+
|
| 34 |
+
if self.task == "object-detection":
|
| 35 |
+
common_outputs["logits"] = {0: "batch_size", 1: "num_queries", 2: "num_classes"}
|
| 36 |
+
common_outputs["pred_boxes"] = {0: "batch_size", 1: "num_queries", 2: "coordinates"}
|
| 37 |
+
|
| 38 |
+
return common_outputs
|
| 39 |
+
|
| 40 |
+
__all__ = [
|
| 41 |
+
'RetinaNetConfig',
|
| 42 |
+
'RetinaNetOnnxConfig'
|
| 43 |
+
]
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:037ef1efd08128649889145dbe95566f4ca09b44c4c421cbb7ee1e314a7de96f
|
| 3 |
+
size 136518212
|
modeling_retinanet.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from torchvision.models import ResNet50_Weights
|
| 4 |
+
from torchvision.models.detection import retinanet_resnet50_fpn, RetinaNet_ResNet50_FPN_Weights
|
| 5 |
+
from torchvision.models.detection.anchor_utils import AnchorGenerator
|
| 6 |
+
|
| 7 |
+
from transformers import PreTrainedModel
|
| 8 |
+
from transformers.utils import ModelOutput
|
| 9 |
+
from typing import OrderedDict, List, Tuple
|
| 10 |
+
|
| 11 |
+
from configuration_retinanet import RetinaNetConfig
|
| 12 |
+
|
| 13 |
+
def _default_anchorgen():
|
| 14 |
+
anchor_sizes = tuple((x, int(x * 2 ** (1.0 / 3)), int(x * 2 ** (2.0 / 3))) for x in [32, 64, 128, 256, 512])
|
| 15 |
+
aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
|
| 16 |
+
anchor_generator = RetinaNetAnchorGenerator(anchor_sizes, aspect_ratios)
|
| 17 |
+
return anchor_generator
|
| 18 |
+
|
| 19 |
+
@dataclass
|
| 20 |
+
class RetinaNetObjectDetectionOutput(ModelOutput):
|
| 21 |
+
logits: torch.FloatTensor = None
|
| 22 |
+
pred_boxes: torch.FloatTensor = None
|
| 23 |
+
image_sizes: List[Tuple] = None
|
| 24 |
+
anchors: List[torch.Tensor] = None
|
| 25 |
+
features: List[torch.Tensor] = None
|
| 26 |
+
|
| 27 |
+
class RetinaNetAnchorGenerator(AnchorGenerator):
|
| 28 |
+
def __init__(
|
| 29 |
+
self,
|
| 30 |
+
sizes=((128, 256, 512),),
|
| 31 |
+
aspect_ratios=((0.5, 1.0, 2.0),)
|
| 32 |
+
):
|
| 33 |
+
super().__init__(sizes, aspect_ratios)
|
| 34 |
+
|
| 35 |
+
def forward(self, pixel_values: torch.Tensor, feature_maps: List[torch.Tensor]) -> List[torch.Tensor]:
|
| 36 |
+
grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps]
|
| 37 |
+
image_size = pixel_values.shape[-2:]
|
| 38 |
+
dtype, device = feature_maps[0].dtype, feature_maps[0].device
|
| 39 |
+
strides = [
|
| 40 |
+
[
|
| 41 |
+
torch.empty((), dtype=torch.int64, device=device).fill_(image_size[0] // g[0]),
|
| 42 |
+
torch.empty((), dtype=torch.int64, device=device).fill_(image_size[1] // g[1]),
|
| 43 |
+
]
|
| 44 |
+
for g in grid_sizes
|
| 45 |
+
]
|
| 46 |
+
self.set_cell_anchors(dtype, device)
|
| 47 |
+
anchors_over_all_feature_maps = self.grid_anchors(grid_sizes, strides)
|
| 48 |
+
anchors: List[List[torch.Tensor]] = []
|
| 49 |
+
for _ in range(pixel_values.shape[0]):
|
| 50 |
+
anchors_in_image = [anchors_per_feature_map for anchors_per_feature_map in anchors_over_all_feature_maps]
|
| 51 |
+
anchors.append(anchors_in_image)
|
| 52 |
+
anchors = [torch.cat(anchors_per_image) for anchors_per_image in anchors]
|
| 53 |
+
return anchors
|
| 54 |
+
|
| 55 |
+
class RetinaNetModelForObjectDetection(PreTrainedModel):
|
| 56 |
+
config_class = RetinaNetConfig
|
| 57 |
+
|
| 58 |
+
def __init__(self, config):
|
| 59 |
+
super().__init__(config)
|
| 60 |
+
|
| 61 |
+
self.config = config
|
| 62 |
+
|
| 63 |
+
model_config = {
|
| 64 |
+
'weights': None,
|
| 65 |
+
'weights_backbone': None,
|
| 66 |
+
'num_classes': None
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
if config.pretrained:
|
| 70 |
+
model_config['weights'] = RetinaNet_ResNet50_FPN_Weights.DEFAULT
|
| 71 |
+
else:
|
| 72 |
+
model_config['num_classes'] = config.num_classes
|
| 73 |
+
if config.pretrained_backbone:
|
| 74 |
+
model_config['weights_backbone'] = ResNet50_Weights.DEFAULT
|
| 75 |
+
|
| 76 |
+
self.model = retinanet_resnet50_fpn(**model_config)
|
| 77 |
+
self.model.anchor_generator = _default_anchorgen()
|
| 78 |
+
|
| 79 |
+
def forward(self, pixel_values, image_sizes, labels=None):
|
| 80 |
+
if labels is not None:
|
| 81 |
+
raise NotImplementedError
|
| 82 |
+
|
| 83 |
+
features = self.model.backbone(pixel_values)
|
| 84 |
+
if isinstance(features, torch.Tensor):
|
| 85 |
+
features = OrderedDict([("0", features)])
|
| 86 |
+
features = list(features.values())
|
| 87 |
+
|
| 88 |
+
# compute the retinanet heads outputs using the features
|
| 89 |
+
head_outputs = self.model.head(features)
|
| 90 |
+
|
| 91 |
+
# create the set of anchors
|
| 92 |
+
anchors = self.model.anchor_generator(pixel_values, features)
|
| 93 |
+
|
| 94 |
+
return RetinaNetObjectDetectionOutput(
|
| 95 |
+
logits=head_outputs['cls_logits'],
|
| 96 |
+
pred_boxes=head_outputs['bbox_regression'],
|
| 97 |
+
image_sizes=image_sizes,
|
| 98 |
+
anchors=anchors,
|
| 99 |
+
features=features
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
__all__ = [
|
| 103 |
+
"RetinaNetModelForObjectDetection"
|
| 104 |
+
]
|