Thastp commited on
Commit
dfb2c72
·
verified ·
1 Parent(s): 60969b1

Upload model

Browse files
Files changed (5) hide show
  1. README.md +199 -0
  2. config.json +15 -0
  3. configuration_retinanet.py +43 -0
  4. model.safetensors +3 -0
  5. modeling_retinanet.py +104 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RetinaNetModelForObjectDetection"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_retinanet.RetinaNetConfig",
7
+ "AutoModelForObjectDetection": "modeling_retinanet.RetinaNetModelForObjectDetection"
8
+ },
9
+ "model_type": "retinanet",
10
+ "num_classes": null,
11
+ "pretrained": true,
12
+ "pretrained_backbone": false,
13
+ "torch_dtype": "float32",
14
+ "transformers_version": "4.49.0"
15
+ }
configuration_retinanet.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from optimum.exporters.onnx.model_configs import ViTOnnxConfig
3
+ from typing import Optional, Dict
4
+
5
+ class RetinaNetConfig(PretrainedConfig):
6
+ model_type = 'retinanet'
7
+
8
+ def __init__(
9
+ self,
10
+ pretrained: bool = False,
11
+ pretrained_backbone: bool = False,
12
+ num_classes: Optional[int] = None,
13
+ **kwargs
14
+ ):
15
+
16
+ self.num_classes = num_classes
17
+ self.pretrained = pretrained
18
+ self.pretrained_backbone = pretrained_backbone
19
+
20
+ super().__init__(**kwargs)
21
+
22
+ class RetinaNetOnnxConfig(ViTOnnxConfig):
23
+ @property
24
+ def inputs(self) -> Dict[str, Dict[int, str]]:
25
+ return {
26
+ "pixel_values": {0: "batch_size", 1: "num_channels", 2: "height", 3: "width"},
27
+ "image_sizes": {0: "batch_size", 1: "image_size"}
28
+ }
29
+
30
+ @property
31
+ def outputs(self) -> Dict[str, Dict[int, str]]:
32
+ common_outputs = super().outputs
33
+
34
+ if self.task == "object-detection":
35
+ common_outputs["logits"] = {0: "batch_size", 1: "num_queries", 2: "num_classes"}
36
+ common_outputs["pred_boxes"] = {0: "batch_size", 1: "num_queries", 2: "coordinates"}
37
+
38
+ return common_outputs
39
+
40
+ __all__ = [
41
+ 'RetinaNetConfig',
42
+ 'RetinaNetOnnxConfig'
43
+ ]
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:037ef1efd08128649889145dbe95566f4ca09b44c4c421cbb7ee1e314a7de96f
3
+ size 136518212
modeling_retinanet.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from dataclasses import dataclass
3
+ from torchvision.models import ResNet50_Weights
4
+ from torchvision.models.detection import retinanet_resnet50_fpn, RetinaNet_ResNet50_FPN_Weights
5
+ from torchvision.models.detection.anchor_utils import AnchorGenerator
6
+
7
+ from transformers import PreTrainedModel
8
+ from transformers.utils import ModelOutput
9
+ from typing import OrderedDict, List, Tuple
10
+
11
+ from configuration_retinanet import RetinaNetConfig
12
+
13
+ def _default_anchorgen():
14
+ anchor_sizes = tuple((x, int(x * 2 ** (1.0 / 3)), int(x * 2 ** (2.0 / 3))) for x in [32, 64, 128, 256, 512])
15
+ aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
16
+ anchor_generator = RetinaNetAnchorGenerator(anchor_sizes, aspect_ratios)
17
+ return anchor_generator
18
+
19
+ @dataclass
20
+ class RetinaNetObjectDetectionOutput(ModelOutput):
21
+ logits: torch.FloatTensor = None
22
+ pred_boxes: torch.FloatTensor = None
23
+ image_sizes: List[Tuple] = None
24
+ anchors: List[torch.Tensor] = None
25
+ features: List[torch.Tensor] = None
26
+
27
+ class RetinaNetAnchorGenerator(AnchorGenerator):
28
+ def __init__(
29
+ self,
30
+ sizes=((128, 256, 512),),
31
+ aspect_ratios=((0.5, 1.0, 2.0),)
32
+ ):
33
+ super().__init__(sizes, aspect_ratios)
34
+
35
+ def forward(self, pixel_values: torch.Tensor, feature_maps: List[torch.Tensor]) -> List[torch.Tensor]:
36
+ grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps]
37
+ image_size = pixel_values.shape[-2:]
38
+ dtype, device = feature_maps[0].dtype, feature_maps[0].device
39
+ strides = [
40
+ [
41
+ torch.empty((), dtype=torch.int64, device=device).fill_(image_size[0] // g[0]),
42
+ torch.empty((), dtype=torch.int64, device=device).fill_(image_size[1] // g[1]),
43
+ ]
44
+ for g in grid_sizes
45
+ ]
46
+ self.set_cell_anchors(dtype, device)
47
+ anchors_over_all_feature_maps = self.grid_anchors(grid_sizes, strides)
48
+ anchors: List[List[torch.Tensor]] = []
49
+ for _ in range(pixel_values.shape[0]):
50
+ anchors_in_image = [anchors_per_feature_map for anchors_per_feature_map in anchors_over_all_feature_maps]
51
+ anchors.append(anchors_in_image)
52
+ anchors = [torch.cat(anchors_per_image) for anchors_per_image in anchors]
53
+ return anchors
54
+
55
+ class RetinaNetModelForObjectDetection(PreTrainedModel):
56
+ config_class = RetinaNetConfig
57
+
58
+ def __init__(self, config):
59
+ super().__init__(config)
60
+
61
+ self.config = config
62
+
63
+ model_config = {
64
+ 'weights': None,
65
+ 'weights_backbone': None,
66
+ 'num_classes': None
67
+ }
68
+
69
+ if config.pretrained:
70
+ model_config['weights'] = RetinaNet_ResNet50_FPN_Weights.DEFAULT
71
+ else:
72
+ model_config['num_classes'] = config.num_classes
73
+ if config.pretrained_backbone:
74
+ model_config['weights_backbone'] = ResNet50_Weights.DEFAULT
75
+
76
+ self.model = retinanet_resnet50_fpn(**model_config)
77
+ self.model.anchor_generator = _default_anchorgen()
78
+
79
+ def forward(self, pixel_values, image_sizes, labels=None):
80
+ if labels is not None:
81
+ raise NotImplementedError
82
+
83
+ features = self.model.backbone(pixel_values)
84
+ if isinstance(features, torch.Tensor):
85
+ features = OrderedDict([("0", features)])
86
+ features = list(features.values())
87
+
88
+ # compute the retinanet heads outputs using the features
89
+ head_outputs = self.model.head(features)
90
+
91
+ # create the set of anchors
92
+ anchors = self.model.anchor_generator(pixel_values, features)
93
+
94
+ return RetinaNetObjectDetectionOutput(
95
+ logits=head_outputs['cls_logits'],
96
+ pred_boxes=head_outputs['bbox_regression'],
97
+ image_sizes=image_sizes,
98
+ anchors=anchors,
99
+ features=features
100
+ )
101
+
102
+ __all__ = [
103
+ "RetinaNetModelForObjectDetection"
104
+ ]