Upload model
Browse files- configuration_retinanet.py +35 -8
- modeling_retinanet.py +125 -103
configuration_retinanet.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
from transformers.configuration_utils import PretrainedConfig
|
| 2 |
from optimum.exporters.onnx.model_configs import ViTOnnxConfig
|
| 3 |
-
from
|
|
|
|
| 4 |
|
| 5 |
class RetinaNetConfig(PretrainedConfig):
|
| 6 |
model_type = 'retinanet'
|
|
@@ -19,23 +20,49 @@ class RetinaNetConfig(PretrainedConfig):
|
|
| 19 |
|
| 20 |
super().__init__(**kwargs)
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
class RetinaNetOnnxConfig(ViTOnnxConfig):
|
|
|
|
|
|
|
| 23 |
@property
|
| 24 |
def inputs(self) -> Dict[str, Dict[int, str]]:
|
| 25 |
return {
|
| 26 |
"pixel_values": {0: "batch_size", 1: "num_channels", 2: "height", 3: "width"},
|
| 27 |
-
"image_sizes": {0: "batch_size", 1: "image_size"}
|
| 28 |
}
|
| 29 |
|
| 30 |
@property
|
| 31 |
def outputs(self) -> Dict[str, Dict[int, str]]:
|
| 32 |
-
common_outputs = super().outputs
|
| 33 |
-
|
| 34 |
-
if self.task == "object-detection":
|
| 35 |
-
common_outputs["logits"] = {0: "batch_size", 1: "num_queries", 2: "num_classes"}
|
| 36 |
-
common_outputs["pred_boxes"] = {0: "batch_size", 1: "num_queries", 2: "coordinates"}
|
| 37 |
|
| 38 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
__all__ = [
|
| 41 |
'RetinaNetConfig',
|
|
|
|
| 1 |
from transformers.configuration_utils import PretrainedConfig
|
| 2 |
from optimum.exporters.onnx.model_configs import ViTOnnxConfig
|
| 3 |
+
from optimum.utils import DummyVisionInputGenerator
|
| 4 |
+
from typing import Optional, Dict, OrderedDict
|
| 5 |
|
| 6 |
class RetinaNetConfig(PretrainedConfig):
|
| 7 |
model_type = 'retinanet'
|
|
|
|
| 20 |
|
| 21 |
super().__init__(**kwargs)
|
| 22 |
|
| 23 |
+
class RetinaNetObjectDetectionInputGenerator(DummyVisionInputGenerator):
|
| 24 |
+
|
| 25 |
+
SUPPORTED_INPUT_NAMES = (
|
| 26 |
+
"pixel_values",
|
| 27 |
+
"image_sizes"
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
def generate(self, input_name: str, framework: str = "pt", int_dtype: str = "int64", float_dtype: str = "fp32"):
|
| 31 |
+
if input_name == "image_sizes":
|
| 32 |
+
return self.random_int_tensor(
|
| 33 |
+
shape=[self.batch_size, 2],
|
| 34 |
+
min_value=1,
|
| 35 |
+
max_value=max(self.height, self.width),
|
| 36 |
+
framework=framework,
|
| 37 |
+
dtype=int_dtype,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
elif input_name == "pixel_values":
|
| 41 |
+
return self.random_float_tensor(
|
| 42 |
+
shape=[self.batch_size, self.num_channels, self.height, self.width],
|
| 43 |
+
framework=framework,
|
| 44 |
+
dtype=float_dtype,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
class RetinaNetOnnxConfig(ViTOnnxConfig):
|
| 48 |
+
DUMMY_INPUT_GENERATOR_CLASSES = (RetinaNetObjectDetectionInputGenerator,)
|
| 49 |
+
|
| 50 |
@property
|
| 51 |
def inputs(self) -> Dict[str, Dict[int, str]]:
|
| 52 |
return {
|
| 53 |
"pixel_values": {0: "batch_size", 1: "num_channels", 2: "height", 3: "width"},
|
|
|
|
| 54 |
}
|
| 55 |
|
| 56 |
@property
|
| 57 |
def outputs(self) -> Dict[str, Dict[int, str]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
return OrderedDict(
|
| 60 |
+
{
|
| 61 |
+
"boxes": {0: "batch_size", 1: "num_predictions", 2: "bbox_coordinates"},
|
| 62 |
+
"labels": {0: "batch_size", 1: "num_predictions"},
|
| 63 |
+
"scores": {0: "batch_size", 1: "num_predictions"},
|
| 64 |
+
}
|
| 65 |
+
)
|
| 66 |
|
| 67 |
__all__ = [
|
| 68 |
'RetinaNetConfig',
|
modeling_retinanet.py
CHANGED
|
@@ -1,104 +1,126 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from dataclasses import dataclass
|
| 3 |
-
from torchvision.models import ResNet50_Weights
|
| 4 |
-
from torchvision.models.detection import retinanet_resnet50_fpn, RetinaNet_ResNet50_FPN_Weights
|
| 5 |
-
from torchvision.models.detection.anchor_utils import AnchorGenerator
|
| 6 |
-
|
| 7 |
-
from transformers import PreTrainedModel
|
| 8 |
-
from transformers.utils import ModelOutput
|
| 9 |
-
from typing import OrderedDict, List,
|
| 10 |
-
|
| 11 |
-
from
|
| 12 |
-
|
| 13 |
-
def _default_anchorgen():
|
| 14 |
-
anchor_sizes = tuple((x, int(x * 2 ** (1.0 / 3)), int(x * 2 ** (2.0 / 3))) for x in [32, 64, 128, 256, 512])
|
| 15 |
-
aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
|
| 16 |
-
anchor_generator = RetinaNetAnchorGenerator(anchor_sizes, aspect_ratios)
|
| 17 |
-
return anchor_generator
|
| 18 |
-
|
| 19 |
-
@dataclass
|
| 20 |
-
class RetinaNetObjectDetectionOutput(ModelOutput):
|
| 21 |
-
logits: torch.FloatTensor = None
|
| 22 |
-
pred_boxes: torch.FloatTensor = None
|
| 23 |
-
image_sizes:
|
| 24 |
-
anchors:
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
class RetinaNetAnchorGenerator(AnchorGenerator):
|
| 28 |
-
def __init__(
|
| 29 |
-
self,
|
| 30 |
-
sizes=((128, 256, 512),),
|
| 31 |
-
aspect_ratios=((0.5, 1.0, 2.0),)
|
| 32 |
-
):
|
| 33 |
-
super().__init__(sizes, aspect_ratios)
|
| 34 |
-
|
| 35 |
-
def forward(self, pixel_values: torch.Tensor, feature_maps: List[torch.Tensor]) -> List[torch.Tensor]:
|
| 36 |
-
grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps]
|
| 37 |
-
image_size = pixel_values.shape[-2:]
|
| 38 |
-
dtype, device = feature_maps[0].dtype, feature_maps[0].device
|
| 39 |
-
strides = [
|
| 40 |
-
[
|
| 41 |
-
torch.empty((), dtype=torch.int64, device=device).fill_(image_size[0] // g[0]),
|
| 42 |
-
torch.empty((), dtype=torch.int64, device=device).fill_(image_size[1] // g[1]),
|
| 43 |
-
]
|
| 44 |
-
for g in grid_sizes
|
| 45 |
-
]
|
| 46 |
-
self.set_cell_anchors(dtype, device)
|
| 47 |
-
anchors_over_all_feature_maps = self.grid_anchors(grid_sizes, strides)
|
| 48 |
-
anchors: List[List[torch.Tensor]] = []
|
| 49 |
-
for _ in range(pixel_values.shape[0]):
|
| 50 |
-
anchors_in_image = [anchors_per_feature_map for anchors_per_feature_map in anchors_over_all_feature_maps]
|
| 51 |
-
anchors.append(anchors_in_image)
|
| 52 |
-
anchors = [torch.cat(anchors_per_image) for anchors_per_image in anchors]
|
| 53 |
-
return anchors
|
| 54 |
-
|
| 55 |
-
class RetinaNetModelForObjectDetection(PreTrainedModel):
|
| 56 |
-
config_class = RetinaNetConfig
|
| 57 |
-
|
| 58 |
-
def __init__(self, config):
|
| 59 |
-
super().__init__(config)
|
| 60 |
-
|
| 61 |
-
self.config = config
|
| 62 |
-
|
| 63 |
-
model_config = {
|
| 64 |
-
'weights': None,
|
| 65 |
-
'weights_backbone': None,
|
| 66 |
-
'num_classes': None
|
| 67 |
-
}
|
| 68 |
-
|
| 69 |
-
if config.pretrained:
|
| 70 |
-
model_config['weights'] = RetinaNet_ResNet50_FPN_Weights.DEFAULT
|
| 71 |
-
else:
|
| 72 |
-
model_config['num_classes'] = config.num_classes
|
| 73 |
-
if config.pretrained_backbone:
|
| 74 |
-
model_config['weights_backbone'] = ResNet50_Weights.DEFAULT
|
| 75 |
-
|
| 76 |
-
self.model = retinanet_resnet50_fpn(**model_config)
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
def
|
| 80 |
-
if labels is not None:
|
| 81 |
-
raise NotImplementedError
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
)
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
]
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from torchvision.models import ResNet50_Weights
|
| 4 |
+
from torchvision.models.detection import retinanet_resnet50_fpn, RetinaNet_ResNet50_FPN_Weights
|
| 5 |
+
from torchvision.models.detection.anchor_utils import AnchorGenerator
|
| 6 |
+
|
| 7 |
+
from transformers import PreTrainedModel
|
| 8 |
+
from transformers.utils import ModelOutput
|
| 9 |
+
from typing import OrderedDict, List, Union
|
| 10 |
+
|
| 11 |
+
from configuration_retinanet import RetinaNetConfig
|
| 12 |
+
|
| 13 |
+
def _default_anchorgen():
|
| 14 |
+
anchor_sizes = tuple((x, int(x * 2 ** (1.0 / 3)), int(x * 2 ** (2.0 / 3))) for x in [32, 64, 128, 256, 512])
|
| 15 |
+
aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
|
| 16 |
+
anchor_generator = RetinaNetAnchorGenerator(anchor_sizes, aspect_ratios)
|
| 17 |
+
return anchor_generator
|
| 18 |
+
|
| 19 |
+
@dataclass
|
| 20 |
+
class RetinaNetObjectDetectionOutput(ModelOutput):
|
| 21 |
+
logits: torch.FloatTensor = None
|
| 22 |
+
pred_boxes: torch.FloatTensor = None
|
| 23 |
+
image_sizes: torch.Tensor = None
|
| 24 |
+
anchors: torch.Tensor = None
|
| 25 |
+
num_anchors_per_level: torch.Tensor = None
|
| 26 |
+
|
| 27 |
+
class RetinaNetAnchorGenerator(AnchorGenerator):
|
| 28 |
+
def __init__(
|
| 29 |
+
self,
|
| 30 |
+
sizes=((128, 256, 512),),
|
| 31 |
+
aspect_ratios=((0.5, 1.0, 2.0),)
|
| 32 |
+
):
|
| 33 |
+
super().__init__(sizes, aspect_ratios)
|
| 34 |
+
|
| 35 |
+
def forward(self, pixel_values: torch.Tensor, feature_maps: List[torch.Tensor]) -> List[torch.Tensor]:
|
| 36 |
+
grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps]
|
| 37 |
+
image_size = pixel_values.shape[-2:]
|
| 38 |
+
dtype, device = feature_maps[0].dtype, feature_maps[0].device
|
| 39 |
+
strides = [
|
| 40 |
+
[
|
| 41 |
+
torch.empty((), dtype=torch.int64, device=device).fill_(image_size[0] // g[0]),
|
| 42 |
+
torch.empty((), dtype=torch.int64, device=device).fill_(image_size[1] // g[1]),
|
| 43 |
+
]
|
| 44 |
+
for g in grid_sizes
|
| 45 |
+
]
|
| 46 |
+
self.set_cell_anchors(dtype, device)
|
| 47 |
+
anchors_over_all_feature_maps = self.grid_anchors(grid_sizes, strides)
|
| 48 |
+
anchors: List[List[torch.Tensor]] = []
|
| 49 |
+
for _ in range(pixel_values.shape[0]):
|
| 50 |
+
anchors_in_image = [anchors_per_feature_map for anchors_per_feature_map in anchors_over_all_feature_maps]
|
| 51 |
+
anchors.append(anchors_in_image)
|
| 52 |
+
anchors = [torch.cat(anchors_per_image) for anchors_per_image in anchors]
|
| 53 |
+
return anchors
|
| 54 |
+
|
| 55 |
+
class RetinaNetModelForObjectDetection(PreTrainedModel):
|
| 56 |
+
config_class = RetinaNetConfig
|
| 57 |
+
|
| 58 |
+
def __init__(self, config):
|
| 59 |
+
super().__init__(config)
|
| 60 |
+
|
| 61 |
+
self.config = config
|
| 62 |
+
|
| 63 |
+
model_config = {
|
| 64 |
+
'weights': None,
|
| 65 |
+
'weights_backbone': None,
|
| 66 |
+
'num_classes': None
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
if config.pretrained:
|
| 70 |
+
model_config['weights'] = RetinaNet_ResNet50_FPN_Weights.DEFAULT
|
| 71 |
+
else:
|
| 72 |
+
model_config['num_classes'] = config.num_classes
|
| 73 |
+
if config.pretrained_backbone:
|
| 74 |
+
model_config['weights_backbone'] = ResNet50_Weights.DEFAULT
|
| 75 |
+
|
| 76 |
+
self.model = retinanet_resnet50_fpn(**model_config)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def forward_without_processing(self, pixel_values, image_sizes=None, labels=None):
|
| 80 |
+
if labels is not None:
|
| 81 |
+
raise NotImplementedError
|
| 82 |
+
else:
|
| 83 |
+
self.model.training = False
|
| 84 |
+
|
| 85 |
+
if image_sizes is None:
|
| 86 |
+
# construct a tensor [batchsize,2] of value pixel_values.shape[-2:]
|
| 87 |
+
raise NotImplementedError
|
| 88 |
+
|
| 89 |
+
features = self.model.backbone(pixel_values)
|
| 90 |
+
if isinstance(features, torch.Tensor):
|
| 91 |
+
features = OrderedDict([("0", features)])
|
| 92 |
+
features = list(features.values())
|
| 93 |
+
|
| 94 |
+
# compute the retinanet heads outputs using the features
|
| 95 |
+
head_outputs = self.model.head(features)
|
| 96 |
+
|
| 97 |
+
# create the set of anchors
|
| 98 |
+
self.model.anchor_generator = _default_anchorgen()
|
| 99 |
+
anchors = self.model.anchor_generator(pixel_values, features)
|
| 100 |
+
num_anchors_per_level = [x.size(2) * x.size(3) for x in features]
|
| 101 |
+
|
| 102 |
+
return RetinaNetObjectDetectionOutput(
|
| 103 |
+
logits=head_outputs['cls_logits'],
|
| 104 |
+
pred_boxes=head_outputs['bbox_regression'],
|
| 105 |
+
image_sizes=image_sizes,
|
| 106 |
+
anchors=torch.stack(anchors, dim=0),
|
| 107 |
+
num_anchors_per_level=torch.tensor(num_anchors_per_level)
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def forward(self, pixel_values: Union[torch.Tensor, List[torch.Tensor]], labels=None):
|
| 112 |
+
"""
|
| 113 |
+
Don't use preprocessor for calling the main forward function.
|
| 114 |
+
"""
|
| 115 |
+
if labels is not None:
|
| 116 |
+
raise NotImplementedError
|
| 117 |
+
else:
|
| 118 |
+
self.model.training = False
|
| 119 |
+
|
| 120 |
+
detections = self.model(pixel_values, labels)
|
| 121 |
+
|
| 122 |
+
return detections
|
| 123 |
+
|
| 124 |
+
__all__ = [
|
| 125 |
+
"RetinaNetModelForObjectDetection"
|
| 126 |
]
|