Add BERTopic model
Browse files- README.md +89 -0
- config.json +17 -0
- ctfidf.bin +3 -0
- ctfidf_config.json +0 -0
- topic_embeddings.bin +3 -0
- topics.json +0 -0
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
tags:
|
4 |
+
- bertopic
|
5 |
+
library_name: bertopic
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
---
|
8 |
+
|
9 |
+
# close-mar11
|
10 |
+
|
11 |
+
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
|
12 |
+
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
|
13 |
+
|
14 |
+
## Usage
|
15 |
+
|
16 |
+
To use this model, please install BERTopic:
|
17 |
+
|
18 |
+
```
|
19 |
+
pip install -U bertopic
|
20 |
+
```
|
21 |
+
|
22 |
+
You can use the model as follows:
|
23 |
+
|
24 |
+
```python
|
25 |
+
from bertopic import BERTopic
|
26 |
+
topic_model = BERTopic.load("Thang203/close-mar11")
|
27 |
+
|
28 |
+
topic_model.get_topic_info()
|
29 |
+
```
|
30 |
+
|
31 |
+
## Topic overview
|
32 |
+
|
33 |
+
* Number of topics: 20
|
34 |
+
* Number of training documents: 4147
|
35 |
+
|
36 |
+
<details>
|
37 |
+
<summary>Click here for an overview of all topics.</summary>
|
38 |
+
|
39 |
+
| Topic ID | Topic Keywords | Topic Frequency | Label |
|
40 |
+
|----------|----------------|-----------------|-------|
|
41 |
+
| -1 | models - language - llms - language models - chatgpt | 11 | -1_models_language_llms_language models |
|
42 |
+
| 0 | code - models - language - llms - language models | 1366 | 0_code_models_language_llms |
|
43 |
+
| 1 | medical - clinical - models - llms - language | 840 | 1_medical_clinical_models_llms |
|
44 |
+
| 2 | language - models - human - model - llms | 310 | 2_language_models_human_model |
|
45 |
+
| 3 | bias - llms - language - models - biases | 196 | 3_bias_llms_language_models |
|
46 |
+
| 4 | attacks - adversarial - attack - llms - security | 188 | 4_attacks_adversarial_attack_llms |
|
47 |
+
| 5 | visual - image - multimodal - models - video | 184 | 5_visual_image_multimodal_models |
|
48 |
+
| 6 | text - detection - chatgpt - models - content | 175 | 6_text_detection_chatgpt_models |
|
49 |
+
| 7 | reasoning - language - models - mathematical - logical | 173 | 7_reasoning_language_models_mathematical |
|
50 |
+
| 8 | students - chatgpt - education - learning - programming | 119 | 8_students_chatgpt_education_learning |
|
51 |
+
| 9 | training - models - model - transformer - transformers | 109 | 9_training_models_model_transformer |
|
52 |
+
| 10 | ai - chatgpt - ethical - concerns - research | 106 | 10_ai_chatgpt_ethical_concerns |
|
53 |
+
| 11 | ai - design - creative - generative - ideas | 84 | 11_ai_design_creative_generative |
|
54 |
+
| 12 | financial - sentiment - stock - market - investment | 68 | 12_financial_sentiment_stock_market |
|
55 |
+
| 13 | spatial - urban - models - traffic - large | 52 | 13_spatial_urban_models_traffic |
|
56 |
+
| 14 | materials - chemistry - drug - discovery - molecule | 41 | 14_materials_chemistry_drug_discovery |
|
57 |
+
| 15 | legal - analysis - law - llms - lawyers | 35 | 15_legal_analysis_law_llms |
|
58 |
+
| 16 | recommendation - recommender - recommender systems - systems - recommendations | 35 | 16_recommendation_recommender_recommender systems_systems |
|
59 |
+
| 17 | game - agents - games - llms - playing | 30 | 17_game_agents_games_llms |
|
60 |
+
| 18 | astronomy - scientific - knowledge - galactica - data | 25 | 18_astronomy_scientific_knowledge_galactica |
|
61 |
+
|
62 |
+
</details>
|
63 |
+
|
64 |
+
## Training hyperparameters
|
65 |
+
|
66 |
+
* calculate_probabilities: False
|
67 |
+
* language: None
|
68 |
+
* low_memory: False
|
69 |
+
* min_topic_size: 10
|
70 |
+
* n_gram_range: (1, 1)
|
71 |
+
* nr_topics: 20
|
72 |
+
* seed_topic_list: None
|
73 |
+
* top_n_words: 10
|
74 |
+
* verbose: True
|
75 |
+
* zeroshot_min_similarity: 0.7
|
76 |
+
* zeroshot_topic_list: None
|
77 |
+
|
78 |
+
## Framework versions
|
79 |
+
|
80 |
+
* Numpy: 1.25.2
|
81 |
+
* HDBSCAN: 0.8.33
|
82 |
+
* UMAP: 0.5.5
|
83 |
+
* Pandas: 1.5.3
|
84 |
+
* Scikit-Learn: 1.2.2
|
85 |
+
* Sentence-transformers: 2.6.1
|
86 |
+
* Transformers: 4.38.2
|
87 |
+
* Numba: 0.58.1
|
88 |
+
* Plotly: 5.15.0
|
89 |
+
* Python: 3.10.12
|
config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"calculate_probabilities": false,
|
3 |
+
"language": null,
|
4 |
+
"low_memory": false,
|
5 |
+
"min_topic_size": 10,
|
6 |
+
"n_gram_range": [
|
7 |
+
1,
|
8 |
+
1
|
9 |
+
],
|
10 |
+
"nr_topics": 20,
|
11 |
+
"seed_topic_list": null,
|
12 |
+
"top_n_words": 10,
|
13 |
+
"verbose": true,
|
14 |
+
"zeroshot_min_similarity": 0.7,
|
15 |
+
"zeroshot_topic_list": null,
|
16 |
+
"embedding_model": "sentence-transformers/all-MiniLM-L6-v2"
|
17 |
+
}
|
ctfidf.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa0f2502e67a7fbb84be41d49e30d8e4a8d04da1d175932348c0085f9e5e687b
|
3 |
+
size 2913219
|
ctfidf_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
topic_embeddings.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3064f7633aa0ba611b626da358bdcd9876f1aa447ece2079e3740960bb411c9
|
3 |
+
size 32009
|
topics.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|