File size: 2,983 Bytes
80313ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae8c9dc
80313ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae8c9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80313ad
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: contradictions_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# contradictions_model

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0973
- Accuracy: 0.3490

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1191        | 0.07  | 100  | 1.1001          | 0.3177   |
| 1.1041        | 0.15  | 200  | 1.0959          | 0.3490   |
| 1.1081        | 0.22  | 300  | 1.0927          | 0.3993   |
| 1.1031        | 0.29  | 400  | 1.1143          | 0.3350   |
| 1.0855        | 0.37  | 500  | 1.0973          | 0.3490   |
| 1.0788        | 0.44  | 600  | 1.1068          | 0.3490   |
| 1.1029        | 0.51  | 700  | 1.0978          | 0.3490   |
| 1.1018        | 0.59  | 800  | 1.1049          | 0.3020   |
| 1.0983        | 0.66  | 900  | 1.1168          | 0.3267   |
| 1.1094        | 0.73  | 1000 | 1.1011          | 0.3020   |
| 1.0866        | 0.81  | 1100 | 1.1168          | 0.3020   |
| 1.1286        | 0.88  | 1200 | 1.1051          | 0.3020   |
| 1.1128        | 0.95  | 1300 | 1.1016          | 0.3490   |
| 1.1194        | 1.03  | 1400 | 1.0978          | 0.3490   |
| 1.0899        | 1.1   | 1500 | 1.1028          | 0.3490   |
| 1.0948        | 1.17  | 1600 | 1.0976          | 0.3490   |
| 1.1061        | 1.25  | 1700 | 1.0975          | 0.3490   |
| 1.0964        | 1.32  | 1800 | 1.1016          | 0.3020   |
| 1.1117        | 1.39  | 1900 | 1.0989          | 0.3490   |
| 1.1053        | 1.47  | 2000 | 1.1013          | 0.3020   |
| 1.0966        | 1.54  | 2100 | 1.0979          | 0.3490   |
| 1.1037        | 1.61  | 2200 | 1.1007          | 0.3490   |
| 1.1102        | 1.69  | 2300 | 1.0984          | 0.3490   |
| 1.1029        | 1.76  | 2400 | 1.0979          | 0.3490   |
| 1.095         | 1.83  | 2500 | 1.0975          | 0.3490   |
| 1.0942        | 1.91  | 2600 | 1.0973          | 0.3490   |
| 1.0962        | 1.98  | 2700 | 1.0973          | 0.3490   |


### Framework versions

- Transformers 4.39.1
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2