Temo27Anas commited on
Commit
ce3898a
·
verified ·
1 Parent(s): 0ce9d76

Model save

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: google/vivit-b-16x2-kinetics400
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: vvt-gs-rot-flip-wtoken-f198-4.4-h768-t8.16.16
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # vvt-gs-rot-flip-wtoken-f198-4.4-h768-t8.16.16
17
+
18
+ This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.7411
21
+ - Accuracy: 0.6984
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 4
42
+ - eval_batch_size: 4
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_ratio: 0.1
47
+ - training_steps: 5500
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|
53
+ | 1.0266 | 0.0402 | 221 | 1.0406 | 0.4286 |
54
+ | 1.0928 | 1.0402 | 442 | 0.9597 | 0.5291 |
55
+ | 0.862 | 2.0402 | 663 | 0.9646 | 0.4709 |
56
+ | 0.9291 | 3.0402 | 884 | 0.9939 | 0.4868 |
57
+ | 0.8705 | 4.0402 | 1105 | 1.0091 | 0.5503 |
58
+ | 0.9667 | 5.0402 | 1326 | 0.9416 | 0.5556 |
59
+ | 0.9227 | 6.0402 | 1547 | 0.8647 | 0.5820 |
60
+ | 1.0569 | 7.0402 | 1768 | 1.1076 | 0.4127 |
61
+ | 0.9919 | 8.0402 | 1989 | 0.9308 | 0.5608 |
62
+ | 0.7163 | 9.0402 | 2210 | 0.9721 | 0.5185 |
63
+ | 0.7941 | 10.0402 | 2431 | 0.9408 | 0.5397 |
64
+ | 0.9386 | 11.0402 | 2652 | 0.8730 | 0.5926 |
65
+ | 0.857 | 12.0402 | 2873 | 0.8833 | 0.6561 |
66
+ | 0.7059 | 13.0402 | 3094 | 0.8673 | 0.6402 |
67
+ | 0.8322 | 14.0402 | 3315 | 0.8233 | 0.6296 |
68
+ | 0.8574 | 15.0402 | 3536 | 0.7643 | 0.6825 |
69
+ | 0.7092 | 16.0402 | 3757 | 0.7972 | 0.6720 |
70
+ | 0.6816 | 17.0402 | 3978 | 0.7122 | 0.7090 |
71
+ | 0.839 | 18.0402 | 4199 | 0.7404 | 0.7143 |
72
+ | 0.4672 | 19.0402 | 4420 | 0.7093 | 0.7196 |
73
+ | 0.5119 | 20.0402 | 4641 | 0.7171 | 0.6825 |
74
+ | 0.7769 | 21.0402 | 4862 | 0.7072 | 0.6931 |
75
+ | 0.6635 | 22.0402 | 5083 | 0.7096 | 0.7196 |
76
+ | 0.8027 | 23.0402 | 5304 | 0.6887 | 0.7037 |
77
+ | 0.4765 | 24.0356 | 5500 | 0.6835 | 0.7407 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.41.2
83
+ - Pytorch 1.13.0+cu117
84
+ - Datasets 2.20.0
85
+ - Tokenizers 0.19.1