init
Browse filesinitial 1
- config.json +41 -0
- configuration_telechat.py +90 -0
- generation_config.json +14 -0
- generation_utils.py +159 -0
- modeling_telechat.py +917 -0
- pytorch_model.bin.index.json +309 -0
- pytorch_model_00001-of-00032.bin +3 -0
- pytorch_model_00002-of-00032.bin +3 -0
- pytorch_model_00003-of-00032.bin +3 -0
- pytorch_model_00004-of-00032.bin +3 -0
- pytorch_model_00005-of-00032.bin +3 -0
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,41 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "apply_residual_connection_post_layernorm": false,
         | 
| 3 | 
            +
              "architectures": [
         | 
| 4 | 
            +
                "TelechatForCausalLM"
         | 
| 5 | 
            +
              ],
         | 
| 6 | 
            +
              "auto_map": {
         | 
| 7 | 
            +
                "AutoConfig": "configuration_telechat.TelechatConfig",
         | 
| 8 | 
            +
                "AutoModelForCausalLM": "modeling_telechat.TelechatForCausalLM"
         | 
| 9 | 
            +
              },
         | 
| 10 | 
            +
              "attention_dropout": 0.0,
         | 
| 11 | 
            +
              "attention_softmax_in_fp32": true,
         | 
| 12 | 
            +
              "bias_dropout_fusion": true,
         | 
| 13 | 
            +
              "bos_token_id": 1,
         | 
| 14 | 
            +
              "eos_token_id": 2,
         | 
| 15 | 
            +
              "hidden_dropout": 0.0,
         | 
| 16 | 
            +
              "hidden_size": 4096,
         | 
| 17 | 
            +
              "initializer_range": 0.02,
         | 
| 18 | 
            +
              "layer_norm_epsilon": 1e-05,
         | 
| 19 | 
            +
              "masked_softmax_fusion": true,
         | 
| 20 | 
            +
              "model_type": "telechat",
         | 
| 21 | 
            +
              "n_head": 32,
         | 
| 22 | 
            +
              "n_inner": null,
         | 
| 23 | 
            +
              "n_layer": 30,
         | 
| 24 | 
            +
              "offset_alibi": 100,
         | 
| 25 | 
            +
              "pad_token_id": 3,
         | 
| 26 | 
            +
              "pretraining_tp": 2,
         | 
| 27 | 
            +
              "seq_length": 8192,
         | 
| 28 | 
            +
              "skip_bias_add": true,
         | 
| 29 | 
            +
              "skip_bias_add_qkv": false,
         | 
| 30 | 
            +
              "slow_but_exact": false,
         | 
| 31 | 
            +
              "transformers_version": "4.24.0",
         | 
| 32 | 
            +
              "unk_token_id": 0,
         | 
| 33 | 
            +
              "use_cache": true,
         | 
| 34 | 
            +
              "vocab_size": 160256,
         | 
| 35 | 
            +
              "ffn_hidden_size": 12288,
         | 
| 36 | 
            +
              "flash_attn":true,
         | 
| 37 | 
            +
              "training_seqlen":4096,
         | 
| 38 | 
            +
              "logn":false,
         | 
| 39 | 
            +
              "embed_layernorm":false
         | 
| 40 | 
            +
            }
         | 
| 41 | 
            +
             | 
    	
        configuration_telechat.py
    ADDED
    
    | @@ -0,0 +1,90 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2022 the Big Science Workshop and HuggingFace Inc. team.  All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            """ Telechat configuration"""
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            from transformers.utils import logging
         | 
| 19 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            class TelechatConfig(PretrainedConfig):
         | 
| 24 | 
            +
                """
         | 
| 25 | 
            +
                Args:
         | 
| 26 | 
            +
                    vocab_size (`int`, *optional*, defaults to 160256): Vocabulary size of the Telechat model.
         | 
| 27 | 
            +
                    hidden_size (`int`, *optional*, defaults to 4096): Dimensionality of the embeddings and hidden states.
         | 
| 28 | 
            +
                    ffn_hidden_size (`int`, *optional*, defaults to 12288): Dimensionality of the feed-forward hidden states.
         | 
| 29 | 
            +
                    n_layer (`int`, *optional*, defaults to 30): Number of hidden layers in the Transformer
         | 
| 30 | 
            +
                    n_head (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer.
         | 
| 31 | 
            +
                    layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers.
         | 
| 32 | 
            +
                    initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         | 
| 33 | 
            +
                    apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`): If enabled, use the layer norm of the hidden states as the residual in the transformer blocks
         | 
| 34 | 
            +
                    hidden_dropout (`float`, *optional*, defaults to 0.0): Dropout rate of the dropout function on the bias dropout.
         | 
| 35 | 
            +
                    attention_dropout (`float`, *optional*, defaults to 0.0): Dropout rate applied to the attention probs
         | 
| 36 | 
            +
                    use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions.
         | 
| 37 | 
            +
                    training_seqlen (`int`, *optional*, defaults to 8192): Sequence length during last finetuning.
         | 
| 38 | 
            +
                    logn (`bool`, *optional*, defaults to `True`): Whether or not to use logN during extrapolation.
         | 
| 39 | 
            +
                    embed_layernorm (`bool`, *optional*, defaults to `True`): Whether or not to use embedding layernorm.
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                """
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                model_type = "telechat"
         | 
| 44 | 
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         | 
| 45 | 
            +
                attribute_map = {
         | 
| 46 | 
            +
                    "num_hidden_layers": "n_layer",
         | 
| 47 | 
            +
                    "num_attention_heads": "n_head",
         | 
| 48 | 
            +
                }
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                def __init__(
         | 
| 51 | 
            +
                    self,
         | 
| 52 | 
            +
                    vocab_size=160256,
         | 
| 53 | 
            +
                    hidden_size=4096,
         | 
| 54 | 
            +
                    n_layer=30,
         | 
| 55 | 
            +
                    n_head=32,
         | 
| 56 | 
            +
                    layer_norm_epsilon=1e-5,
         | 
| 57 | 
            +
                    initializer_range=0.02,
         | 
| 58 | 
            +
                    use_cache=True,
         | 
| 59 | 
            +
                    bos_token_id=1,
         | 
| 60 | 
            +
                    eos_token_id=2,
         | 
| 61 | 
            +
                    apply_residual_connection_post_layernorm=False,
         | 
| 62 | 
            +
                    hidden_dropout=0.0,
         | 
| 63 | 
            +
                    attention_dropout=0.0,
         | 
| 64 | 
            +
                    ffn_hidden_size=12288,
         | 
| 65 | 
            +
                    training_seqlen = 8192,
         | 
| 66 | 
            +
                    logn = True,
         | 
| 67 | 
            +
                    embed_layernorm = False,
         | 
| 68 | 
            +
                    **kwargs,
         | 
| 69 | 
            +
                ):
         | 
| 70 | 
            +
                    self.vocab_size = vocab_size
         | 
| 71 | 
            +
                    n_embed = kwargs.pop("n_embed", None)
         | 
| 72 | 
            +
                    self.hidden_size = hidden_size if n_embed is None else n_embed
         | 
| 73 | 
            +
                    self.n_layer = n_layer
         | 
| 74 | 
            +
                    self.n_head = n_head
         | 
| 75 | 
            +
                    self.layer_norm_epsilon = layer_norm_epsilon
         | 
| 76 | 
            +
                    self.initializer_range = initializer_range
         | 
| 77 | 
            +
                    self.use_cache = use_cache
         | 
| 78 | 
            +
                    self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
         | 
| 79 | 
            +
                    self.hidden_dropout = hidden_dropout
         | 
| 80 | 
            +
                    self.attention_dropout = attention_dropout
         | 
| 81 | 
            +
                    self.bos_token_id = bos_token_id
         | 
| 82 | 
            +
                    self.eos_token_id = eos_token_id
         | 
| 83 | 
            +
                    self.logn = logn
         | 
| 84 | 
            +
                    self.ffn_hidden_size = ffn_hidden_size
         | 
| 85 | 
            +
                    self.training_seqlen = training_seqlen
         | 
| 86 | 
            +
                    self.embed_layernorm = embed_layernorm
         | 
| 87 | 
            +
             | 
| 88 | 
            +
             | 
| 89 | 
            +
                    super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
         | 
| 90 | 
            +
             | 
    	
        generation_config.json
    ADDED
    
    | @@ -0,0 +1,14 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "max_length": 4096,
         | 
| 3 | 
            +
              "do_sample": false,
         | 
| 4 | 
            +
              "use_cache": true,
         | 
| 5 | 
            +
              "temperature": 0.3,
         | 
| 6 | 
            +
              "top_k": 5,
         | 
| 7 | 
            +
              "top_p": 0.85,
         | 
| 8 | 
            +
              "repetition_penalty": 1.03,
         | 
| 9 | 
            +
              "pad_token_id": 3,
         | 
| 10 | 
            +
              "bos_token_id": 160132,
         | 
| 11 | 
            +
              "eos_token_id": 160133,
         | 
| 12 | 
            +
              "user_token_id": 160130,
         | 
| 13 | 
            +
              "bot_token_id": 160131
         | 
| 14 | 
            +
            }
         | 
    	
        generation_utils.py
    ADDED
    
    | @@ -0,0 +1,159 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import Optional
         | 
| 2 | 
            +
            from collections import deque
         | 
| 3 | 
            +
            from queue import Queue
         | 
| 4 | 
            +
            import copy
         | 
| 5 | 
            +
             | 
| 6 | 
            +
             | 
| 7 | 
            +
            class History:
         | 
| 8 | 
            +
             | 
| 9 | 
            +
                def __init__(self, tokenizer, history):
         | 
| 10 | 
            +
                    '''
         | 
| 11 | 
            +
                    init from a list of dict
         | 
| 12 | 
            +
                    '''
         | 
| 13 | 
            +
                    # use deque to meet some special situation
         | 
| 14 | 
            +
                    self.input_history = deque()
         | 
| 15 | 
            +
                    self.tokenizer = tokenizer
         | 
| 16 | 
            +
                    if history:
         | 
| 17 | 
            +
                        self._transfer_from_list(history)
         | 
| 18 | 
            +
             | 
| 19 | 
            +
                def _transfer_from_list(self, history):
         | 
| 20 | 
            +
                    for message in history:
         | 
| 21 | 
            +
                        content = message.get("content")
         | 
| 22 | 
            +
                        message.update(self.tokenizer(content))
         | 
| 23 | 
            +
                        self.input_history.append(message)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                def append(self, message):
         | 
| 26 | 
            +
                    content = message.get("content")
         | 
| 27 | 
            +
                    message.update(self.tokenizer(content))
         | 
| 28 | 
            +
                    self.input_history.append(message)
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                def append_left(self, message):
         | 
| 31 | 
            +
                    content = message.get("content")
         | 
| 32 | 
            +
                    message.update(self.tokenizer(content))
         | 
| 33 | 
            +
                    self.input_history.appendleft(message)
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                def pop(self):
         | 
| 36 | 
            +
                    x = self.input_history.pop()
         | 
| 37 | 
            +
                    return x
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                def pop_left(self):
         | 
| 40 | 
            +
                    x = self.pop_left()
         | 
| 41 | 
            +
                    return x
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                def update(self, content: str):
         | 
| 44 | 
            +
                    x = self.input_history.pop()
         | 
| 45 | 
            +
                    self.append({"role": x["role"], "content": content})
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                def __len__(self):
         | 
| 48 | 
            +
                    return self.input_history.__len__()
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                def __str__(self):
         | 
| 51 | 
            +
                    return self.input_history.__str__()
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                def __copy__(self):
         | 
| 54 | 
            +
                    new_instance = type(self)(self.tokenizer, [])
         | 
| 55 | 
            +
                    new_instance.input_history = copy.copy(self.input_history)
         | 
| 56 | 
            +
                    return new_instance
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                def __deepcopy__(self, memodict={}):
         | 
| 59 | 
            +
                    new_instance = type(self)(self.tokenizer, [])
         | 
| 60 | 
            +
                    new_instance.input_history = copy.deepcopy(self.input_history)
         | 
| 61 | 
            +
                    return new_instance
         | 
| 62 | 
            +
             | 
| 63 | 
            +
             | 
| 64 | 
            +
            class TelechatIterTextStreamer:
         | 
| 65 | 
            +
                """
         | 
| 66 | 
            +
                With reference to the TextIterStreamers in transformers, we have rewritten this class
         | 
| 67 | 
            +
                """
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                def __init__(
         | 
| 70 | 
            +
                        self, tokenizer, history: History = None, skip_prompt: bool = False, timeout: Optional[float] = None,
         | 
| 71 | 
            +
                        **decode_kwargs
         | 
| 72 | 
            +
                ):
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                    self.tokenizer = tokenizer
         | 
| 75 | 
            +
                    self.history = history
         | 
| 76 | 
            +
                    self.skip_prompt = skip_prompt
         | 
| 77 | 
            +
                    self.timeout = timeout
         | 
| 78 | 
            +
                    self.decode_kwargs = decode_kwargs
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                    self.text_queue = Queue()
         | 
| 81 | 
            +
                    self.token_cache = []
         | 
| 82 | 
            +
                    self.cache_time = 0
         | 
| 83 | 
            +
                    self.text_until = ""
         | 
| 84 | 
            +
                    self.stop_signal = None
         | 
| 85 | 
            +
                    self.next_tokens_are_prompt = True
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                    self.history.append({"role": "bot", "content": self.text_until})
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                def put(self, value):
         | 
| 90 | 
            +
                    """
         | 
| 91 | 
            +
                    put printable text into queue
         | 
| 92 | 
            +
                    """
         | 
| 93 | 
            +
                    if len(value.shape) > 1 and value.shape[0] > 1:
         | 
| 94 | 
            +
                        raise ValueError("TextStreamer only supports batch size 1")
         | 
| 95 | 
            +
                    elif len(value.shape) > 1:
         | 
| 96 | 
            +
                        value = value[0]
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                    if self.skip_prompt and self.next_tokens_are_prompt:
         | 
| 99 | 
            +
                        self.next_tokens_are_prompt = False
         | 
| 100 | 
            +
                        return
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                    if value[-1] == self.tokenizer.eos_token_id:
         | 
| 103 | 
            +
                        return
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                    # there may be some smart way to decode.
         | 
| 106 | 
            +
                    self.token_cache.extend(value.tolist())
         | 
| 107 | 
            +
                    text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs)
         | 
| 108 | 
            +
                    self.cache_time += 1
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                    if self._is_printable(text) or self.cache_time >= 6:
         | 
| 111 | 
            +
                        self.text_until += text
         | 
| 112 | 
            +
                        self.token_cache = []
         | 
| 113 | 
            +
                        self.cache_time = 0
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                    else:
         | 
| 116 | 
            +
                        return
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                    self.on_finalized_text(text)
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                def end(self):
         | 
| 121 | 
            +
                    """Flushes any remaining cache and prints a newline to stdout."""
         | 
| 122 | 
            +
                    # Flush the cache, if it exists
         | 
| 123 | 
            +
                    text = ""
         | 
| 124 | 
            +
                    if len(self.token_cache) > 0:
         | 
| 125 | 
            +
                        text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs)
         | 
| 126 | 
            +
                        self.text_until += text
         | 
| 127 | 
            +
                    self.on_finalized_text(text, stream_end=True)
         | 
| 128 | 
            +
                    self.clear_cache()
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                def clear_cache(self):
         | 
| 131 | 
            +
                    self.cache_time = 0
         | 
| 132 | 
            +
                    self.token_cache = []
         | 
| 133 | 
            +
                    self.text_until = ""
         | 
| 134 | 
            +
                    self.history = None
         | 
| 135 | 
            +
                    self.next_tokens_are_prompt = True
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                def on_finalized_text(self, text: str, stream_end: bool = False):
         | 
| 138 | 
            +
                    """Put the text tuple in the queue."""
         | 
| 139 | 
            +
                    self.history.update(self.text_until)
         | 
| 140 | 
            +
                    self.text_queue.put((text, self.history), timeout=self.timeout)
         | 
| 141 | 
            +
                    if stream_end:
         | 
| 142 | 
            +
                        self.text_queue.put((self.stop_signal, self.history), timeout=self.timeout)
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                @staticmethod
         | 
| 145 | 
            +
                def _is_printable(cp):
         | 
| 146 | 
            +
                    """Checks whether tokens can be decoded or not"""
         | 
| 147 | 
            +
                    if "�" in cp:
         | 
| 148 | 
            +
                        return False
         | 
| 149 | 
            +
                    return True
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                def __iter__(self):
         | 
| 152 | 
            +
                    return self
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                def __next__(self):
         | 
| 155 | 
            +
                    value_now, history_until = self.text_queue.get(timeout=self.timeout)
         | 
| 156 | 
            +
                    if value_now == self.stop_signal:
         | 
| 157 | 
            +
                        raise StopIteration()
         | 
| 158 | 
            +
                    else:
         | 
| 159 | 
            +
                        return value_now, history_until
         | 
    	
        modeling_telechat.py
    ADDED
    
    | @@ -0,0 +1,917 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2022 HuggingFace Inc. team and BigScience workshop.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            # Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            # Copyright (c) 2021 EleutherAI
         | 
| 19 | 
            +
            # This file is based on code by the authors denoted below and has been modified from its original version.
         | 
| 20 | 
            +
            #
         | 
| 21 | 
            +
            # Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
         | 
| 22 | 
            +
            #
         | 
| 23 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 24 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 25 | 
            +
            # You may obtain a copy of the License at
         | 
| 26 | 
            +
            #
         | 
| 27 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 28 | 
            +
            #
         | 
| 29 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 30 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 31 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 32 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 33 | 
            +
            # limitations under the License.
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
            """PyTorch TELECHAT model."""
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            import warnings
         | 
| 39 | 
            +
            from typing import Optional, Tuple, Union, List, Dict
         | 
| 40 | 
            +
            from threading import Thread
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            import torch
         | 
| 43 | 
            +
            import math
         | 
| 44 | 
            +
            import copy
         | 
| 45 | 
            +
            from torch import nn
         | 
| 46 | 
            +
            import torch.utils.checkpoint
         | 
| 47 | 
            +
            from torch.nn import functional as F
         | 
| 48 | 
            +
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
         | 
| 49 | 
            +
            from transformers.modeling_outputs import (
         | 
| 50 | 
            +
                BaseModelOutputWithPastAndCrossAttentions,
         | 
| 51 | 
            +
                CausalLMOutputWithCrossAttentions
         | 
| 52 | 
            +
            )
         | 
| 53 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 54 | 
            +
            from transformers.utils import logging
         | 
| 55 | 
            +
            from transformers import GenerationConfig
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            from .configuration_telechat import TelechatConfig
         | 
| 58 | 
            +
            from .generation_utils import History, TelechatIterTextStreamer
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            _CHECKPOINT_FOR_DOC = "telechat"
         | 
| 63 | 
            +
            _CONFIG_FOR_DOC = "TelechatConfig"
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            TELECHAT_PRETRAINED_MODEL_ARCHIVE_LIST = []
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            try:
         | 
| 68 | 
            +
                from einops import rearrange
         | 
| 69 | 
            +
            except ImportError:
         | 
| 70 | 
            +
                rearrange = None
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            use_flash_attn = True
         | 
| 73 | 
            +
            try:
         | 
| 74 | 
            +
                from flash_attn.flash_attn_interface import flash_attn_unpadded_func
         | 
| 75 | 
            +
            except ImportError:
         | 
| 76 | 
            +
                try:
         | 
| 77 | 
            +
                    from flash_attn.flash_attn_interface import flash_attn_varlen_func as flash_attn_unpadded_func
         | 
| 78 | 
            +
                except ImportError:
         | 
| 79 | 
            +
                    flash_attn_unpadded_func = None
         | 
| 80 | 
            +
             | 
| 81 | 
            +
             | 
| 82 | 
            +
            class RotaryEmbedding(torch.nn.Module):
         | 
| 83 | 
            +
                # Extracted from: https://github.com/EleutherAI/gpt-neox
         | 
| 84 | 
            +
                def __init__(self, dim, config, base=10000, precision=torch.half):
         | 
| 85 | 
            +
                    super().__init__()
         | 
| 86 | 
            +
                    self.config = config
         | 
| 87 | 
            +
                    self.dim = dim
         | 
| 88 | 
            +
                    self.base = base
         | 
| 89 | 
            +
                    self.inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float().half() / dim)).cuda()
         | 
| 90 | 
            +
                    self.max_seq_len_cached = None
         | 
| 91 | 
            +
                    self.cos_cached = None
         | 
| 92 | 
            +
                    self.sin_cached = None
         | 
| 93 | 
            +
                    self.precision = precision
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                def get_mscale(self, scale=1):
         | 
| 96 | 
            +
                    if scale <= 1:
         | 
| 97 | 
            +
                        return 1.0
         | 
| 98 | 
            +
                    return 0.1 * math.log(scale) + 1.0
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                def get_ntk_alpha(self, true_seq_len):
         | 
| 101 | 
            +
                    context_value = math.log(true_seq_len / 4096, 2) + 1
         | 
| 102 | 
            +
                    # ntk_alpha = 2 ** context_value - 1
         | 
| 103 | 
            +
                    ntk_alpha = 2 ** math.ceil(context_value) - 1
         | 
| 104 | 
            +
                    ntk_alpha = max(ntk_alpha, 1)
         | 
| 105 | 
            +
                    return ntk_alpha
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                def forward(self, x, seq_dim=0, seq_len=None):
         | 
| 108 | 
            +
                    if seq_len is None:
         | 
| 109 | 
            +
                        seq_len = x.shape[seq_dim]
         | 
| 110 | 
            +
                    seq_len = max(seq_len, self.config.training_seqlen)
         | 
| 111 | 
            +
                    ntk_alpha = self.get_ntk_alpha(seq_len)
         | 
| 112 | 
            +
                    self.mscale = float(self.get_mscale(seq_len / self.config.training_seqlen))
         | 
| 113 | 
            +
                    if True:
         | 
| 114 | 
            +
                        base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
         | 
| 115 | 
            +
                        self.inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, device=x.device).float() / self.dim))
         | 
| 116 | 
            +
                        self.max_seq_len_cached = seq_len
         | 
| 117 | 
            +
                        t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
         | 
| 118 | 
            +
                        freqs = torch.einsum('i,j->ij', t, self.inv_freq)
         | 
| 119 | 
            +
                        # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 120 | 
            +
                        emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
         | 
| 121 | 
            +
                        if self.precision == torch.bfloat16:
         | 
| 122 | 
            +
                            emb = emb.float()
         | 
| 123 | 
            +
                        # [sx, 1 (b * np), hn]
         | 
| 124 | 
            +
                        self.cos_cached = self.mscale * emb.cos()[:, None, :].half()
         | 
| 125 | 
            +
                        self.sin_cached = self.mscale * emb.sin()[:, None, :].half()
         | 
| 126 | 
            +
                        if self.precision == torch.bfloat16:
         | 
| 127 | 
            +
                            self.cos_cached = self.cos_cached.bfloat16()
         | 
| 128 | 
            +
                            self.sin_cached = self.sin_cached.bfloat16()
         | 
| 129 | 
            +
                    return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
         | 
| 130 | 
            +
             | 
| 131 | 
            +
             | 
| 132 | 
            +
            # rotary pos emb helpers:
         | 
| 133 | 
            +
            def rotate_half(x):
         | 
| 134 | 
            +
                x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
         | 
| 135 | 
            +
                return torch.cat((-x2, x1), dim=x1.ndim - 1)  # dim=-1 triggers a bug in earlier torch versions
         | 
| 136 | 
            +
             | 
| 137 | 
            +
             | 
| 138 | 
            +
            def apply_rotary_pos_emb_torch(q, k, cos, sin, offset: int = 0):  # jitting fails with bf16
         | 
| 139 | 
            +
                cos, sin = cos[offset:q.shape[0] + offset, ...], sin[offset:q.shape[0] + offset, ...]
         | 
| 140 | 
            +
                return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
         | 
| 141 | 
            +
             | 
| 142 | 
            +
             | 
| 143 | 
            +
            class MixedFusedRMSNorm(nn.Module):
         | 
| 144 | 
            +
                # Extracted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
         | 
| 145 | 
            +
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 146 | 
            +
                    super().__init__()
         | 
| 147 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 148 | 
            +
                    self.variance_epsilon = eps
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                def forward(self, hidden_states):
         | 
| 151 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 152 | 
            +
                    hidden_states = hidden_states.to(torch.float32)
         | 
| 153 | 
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         | 
| 154 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 155 | 
            +
                    return self.weight * hidden_states.to(input_dtype)
         | 
| 156 | 
            +
             | 
| 157 | 
            +
             | 
| 158 | 
            +
            class FlashSelfAttention(torch.nn.Module):
         | 
| 159 | 
            +
                # Extracted from https://github.com/microsoft/Megatron-DeepSpeed/blob/main/megatron/model/transformer.py
         | 
| 160 | 
            +
                """Implement the scaled dot product attention with softmax.
         | 
| 161 | 
            +
                Arguments
         | 
| 162 | 
            +
                ---------
         | 
| 163 | 
            +
                    softmax_scale: The temperature to use for the softmax attention.
         | 
| 164 | 
            +
                                  (default: 1/sqrt(d_keys) where d_keys is computed at
         | 
| 165 | 
            +
                                  runtime)
         | 
| 166 | 
            +
                    attention_dropout: The dropout rate to apply to the attention
         | 
| 167 | 
            +
                                       (default: 0.0)
         | 
| 168 | 
            +
                """
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
         | 
| 171 | 
            +
                             device=None, dtype=None):
         | 
| 172 | 
            +
                    super().__init__()
         | 
| 173 | 
            +
                    assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
         | 
| 174 | 
            +
                                                                  'e.g., with pip install flash-attn')
         | 
| 175 | 
            +
                    assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
         | 
| 176 | 
            +
                    self.causal = causal
         | 
| 177 | 
            +
                    self.softmax_scale = softmax_scale
         | 
| 178 | 
            +
                    self.dropout_p = attention_dropout
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                def forward(self, q, k, v):
         | 
| 181 | 
            +
                    """Implements the multihead softmax attention.
         | 
| 182 | 
            +
                    Arguments
         | 
| 183 | 
            +
                    ---------
         | 
| 184 | 
            +
                        q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
         | 
| 185 | 
            +
                    """
         | 
| 186 | 
            +
                    assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
         | 
| 187 | 
            +
                    assert all((i.is_cuda for i in (q, k, v)))
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                    batch_size, seqlen_q = q.shape[0], q.shape[1]
         | 
| 190 | 
            +
                    seqlen_k = k.shape[1]
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                    q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
         | 
| 193 | 
            +
                    cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
         | 
| 194 | 
            +
                                                device=q.device)
         | 
| 195 | 
            +
                    self.training = False
         | 
| 196 | 
            +
                    if self.training:
         | 
| 197 | 
            +
                        # during training q,k,v always have same seqlen
         | 
| 198 | 
            +
                        assert seqlen_k == seqlen_q
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                        is_causal = self.causal
         | 
| 201 | 
            +
                        cu_seqlens_k = cu_seqlens_q
         | 
| 202 | 
            +
                        dropout_p = self.dropout_p
         | 
| 203 | 
            +
                    else:
         | 
| 204 | 
            +
                        # turn off FA causal mask after first inference autoregressive iteration
         | 
| 205 | 
            +
                        # only on first autoregressive step q,k,v have same seqlen
         | 
| 206 | 
            +
                        is_causal = seqlen_q == seqlen_k
         | 
| 207 | 
            +
                        cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
         | 
| 208 | 
            +
                                                    device=q.device)
         | 
| 209 | 
            +
                        dropout_p = 0
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    output = flash_attn_unpadded_func(
         | 
| 212 | 
            +
                        q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
         | 
| 213 | 
            +
                        dropout_p=dropout_p,
         | 
| 214 | 
            +
                        softmax_scale=self.softmax_scale, causal=is_causal
         | 
| 215 | 
            +
                    )
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                    output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
         | 
| 218 | 
            +
                    return output
         | 
| 219 | 
            +
             | 
| 220 | 
            +
             | 
| 221 | 
            +
            def _make_causal_mask(
         | 
| 222 | 
            +
                    input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
         | 
| 223 | 
            +
            ) -> torch.BoolTensor:
         | 
| 224 | 
            +
                """
         | 
| 225 | 
            +
                Make causal mask used for self-attention.
         | 
| 226 | 
            +
                """
         | 
| 227 | 
            +
                batch_size, target_length = input_ids_shape
         | 
| 228 | 
            +
                mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
         | 
| 229 | 
            +
                # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
         | 
| 230 | 
            +
                seq_ids = torch.arange(target_length, device=device)
         | 
| 231 | 
            +
                mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
         | 
| 232 | 
            +
             | 
| 233 | 
            +
                if past_key_values_length > 0:
         | 
| 234 | 
            +
                    mask[:, :past_key_values_length] = False
         | 
| 235 | 
            +
             | 
| 236 | 
            +
                expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
         | 
| 237 | 
            +
                return expanded_mask
         | 
| 238 | 
            +
             | 
| 239 | 
            +
             | 
| 240 | 
            +
            def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
         | 
| 241 | 
            +
                """
         | 
| 242 | 
            +
                Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
         | 
| 243 | 
            +
                """
         | 
| 244 | 
            +
                batch_size, src_length = mask.shape
         | 
| 245 | 
            +
                tgt_length = tgt_length if tgt_length is not None else src_length
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
         | 
| 248 | 
            +
                return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
         | 
| 249 | 
            +
             | 
| 250 | 
            +
             | 
| 251 | 
            +
            def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
         | 
| 252 | 
            +
                """
         | 
| 253 | 
            +
                Dropout add function
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                Args:
         | 
| 256 | 
            +
                    x (`torch.tensor`, *required*):
         | 
| 257 | 
            +
                        input tensor
         | 
| 258 | 
            +
                    residual (`torch.tensor`, *required*):
         | 
| 259 | 
            +
                        residual tensor
         | 
| 260 | 
            +
                    prob (`float`, *required*):
         | 
| 261 | 
            +
                        dropout probability
         | 
| 262 | 
            +
                    training (`bool`, *required*):
         | 
| 263 | 
            +
                        training mode
         | 
| 264 | 
            +
                """
         | 
| 265 | 
            +
                out = F.dropout(x, p=prob, training=training)
         | 
| 266 | 
            +
                out = residual + out
         | 
| 267 | 
            +
                return out
         | 
| 268 | 
            +
             | 
| 269 | 
            +
             | 
| 270 | 
            +
            def telechat_gelu_forward(x: torch.Tensor) -> torch.Tensor:
         | 
| 271 | 
            +
                """
         | 
| 272 | 
            +
                Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to
         | 
| 273 | 
            +
                make the model jitable.
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                Args:
         | 
| 276 | 
            +
                    x (`torch.tensor`, *required*):
         | 
| 277 | 
            +
                        input hidden states
         | 
| 278 | 
            +
                """
         | 
| 279 | 
            +
                return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
         | 
| 280 | 
            +
             | 
| 281 | 
            +
             | 
| 282 | 
            +
            def telechat_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
         | 
| 283 | 
            +
                """
         | 
| 284 | 
            +
                gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) +
         | 
| 285 | 
            +
                0.3989423 * x * torch.exp(-0.5 * x * x)
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                Args:
         | 
| 288 | 
            +
                    g (`torch.tensor`, *required*):
         | 
| 289 | 
            +
                        gradient output tensor
         | 
| 290 | 
            +
                    x (`torch.tensor`, *required*):
         | 
| 291 | 
            +
                        input tensor
         | 
| 292 | 
            +
                """
         | 
| 293 | 
            +
                x = x[0]  # x is a tuple of 1 element, needs to unpack it first
         | 
| 294 | 
            +
                tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
         | 
| 295 | 
            +
                # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
         | 
| 296 | 
            +
                ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
         | 
| 297 | 
            +
                return ff * g
         | 
| 298 | 
            +
             | 
| 299 | 
            +
             | 
| 300 | 
            +
            class GeLUFunction(torch.autograd.Function):
         | 
| 301 | 
            +
                @staticmethod
         | 
| 302 | 
            +
                def forward(ctx, input: torch.Tensor) -> torch.Tensor:
         | 
| 303 | 
            +
                    ctx.save_for_backward(input)
         | 
| 304 | 
            +
                    return telechat_gelu_forward(input)
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                @staticmethod
         | 
| 307 | 
            +
                def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
         | 
| 308 | 
            +
                    input = ctx.saved_tensors
         | 
| 309 | 
            +
                    tmp = telechat_gelu_back(grad_output, input)
         | 
| 310 | 
            +
                    return tmp
         | 
| 311 | 
            +
             | 
| 312 | 
            +
             | 
| 313 | 
            +
            class TelechatGelu(nn.Module):
         | 
| 314 | 
            +
                """
         | 
| 315 | 
            +
                TelechatBiasGelu wrapper function that make use of the simple function on inference mode to make the model
         | 
| 316 | 
            +
                torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly
         | 
| 317 | 
            +
                copied from Megatron-DeepSpeed code and adapted for our needs
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329
         | 
| 320 | 
            +
                """
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                def __init__(self):
         | 
| 323 | 
            +
                    super().__init__()
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         | 
| 326 | 
            +
                    if self.training:
         | 
| 327 | 
            +
                        return GeLUFunction.apply(x)
         | 
| 328 | 
            +
                    else:
         | 
| 329 | 
            +
                        return telechat_gelu_forward(x)
         | 
| 330 | 
            +
             | 
| 331 | 
            +
             | 
| 332 | 
            +
            class TelechatAttention(nn.Module):
         | 
| 333 | 
            +
                def __init__(self, config: TelechatConfig, layer_idx):
         | 
| 334 | 
            +
                    super().__init__()
         | 
| 335 | 
            +
                    self.kv_cache = None
         | 
| 336 | 
            +
                    self.layer_idx = layer_idx
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 339 | 
            +
                    self.num_heads = config.n_head
         | 
| 340 | 
            +
                    self.head_dim = self.hidden_size // self.num_heads
         | 
| 341 | 
            +
                    self.split_size = self.hidden_size
         | 
| 342 | 
            +
                    self.hidden_dropout = config.hidden_dropout
         | 
| 343 | 
            +
                    self.config = config
         | 
| 344 | 
            +
             | 
| 345 | 
            +
                    if self.head_dim * self.num_heads != self.hidden_size:
         | 
| 346 | 
            +
                        raise ValueError(
         | 
| 347 | 
            +
                            f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
         | 
| 348 | 
            +
                            f" {self.num_heads})."
         | 
| 349 | 
            +
                        )
         | 
| 350 | 
            +
             | 
| 351 | 
            +
                    # Layer-wise attention scaling
         | 
| 352 | 
            +
                    self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
         | 
| 353 | 
            +
                    self.beta = 1.0
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                    self.num_key_value_heads = self.num_heads
         | 
| 356 | 
            +
                    kv_projection_size = self.head_dim * self.num_key_value_heads
         | 
| 357 | 
            +
                    self.num_key_value_groups = self.num_heads // self.num_key_value_heads
         | 
| 358 | 
            +
                    self.query = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
         | 
| 359 | 
            +
                    self.key_value = nn.Linear(self.hidden_size, kv_projection_size * 2, bias=False)
         | 
| 360 | 
            +
                    self.dense = nn.Linear(self.hidden_size, self.hidden_size)
         | 
| 361 | 
            +
                    self.attention_dropout = nn.Dropout(config.attention_dropout)
         | 
| 362 | 
            +
                    self.rotary_emb = RotaryEmbedding(self.head_dim, config=config)
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                    self.core_attention_flash = FlashSelfAttention(
         | 
| 365 | 
            +
                        causal=True, attention_dropout=config.attention_dropout
         | 
| 366 | 
            +
                    )
         | 
| 367 | 
            +
             | 
| 368 | 
            +
                    self.last_key_layer = None
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                def repeat_kv(self, hidden_states, n_rep):
         | 
| 371 | 
            +
                    slen, batch, num_key_value_heads_per_partition, head_dim = hidden_states.shape
         | 
| 372 | 
            +
                    if n_rep == 1:
         | 
| 373 | 
            +
                        return hidden_states
         | 
| 374 | 
            +
                    hidden_states = hidden_states[:, :, :, None, :].expand(slen, batch, num_key_value_heads_per_partition, n_rep,
         | 
| 375 | 
            +
                                                                           head_dim)
         | 
| 376 | 
            +
                    return hidden_states.reshape(slen, batch, num_key_value_heads_per_partition * n_rep, head_dim)
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                def split_tensor_along_last_dim(self,
         | 
| 379 | 
            +
                                                tensor: torch.Tensor,
         | 
| 380 | 
            +
                                                num_partitions: int,
         | 
| 381 | 
            +
                                                contiguous_split_chunks: bool = False,
         | 
| 382 | 
            +
                                                ):
         | 
| 383 | 
            +
             | 
| 384 | 
            +
                    # Get the size and dimension.
         | 
| 385 | 
            +
                    last_dim = tensor.dim() - 1
         | 
| 386 | 
            +
                    last_dim_size = tensor.size()[last_dim] // num_partitions
         | 
| 387 | 
            +
                    # Split.
         | 
| 388 | 
            +
                    tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
         | 
| 389 | 
            +
                    # Note: torch.split does not create contiguous tensors by default.
         | 
| 390 | 
            +
                    if contiguous_split_chunks:
         | 
| 391 | 
            +
                        return tuple(chunk.contiguous() for chunk in tensor_list)
         | 
| 392 | 
            +
             | 
| 393 | 
            +
                    return tensor_list
         | 
| 394 | 
            +
             | 
| 395 | 
            +
                def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
         | 
| 396 | 
            +
                    batch_size_and_num_heads, seq_length, _ = x.shape
         | 
| 397 | 
            +
                    batch_size = batch_size_and_num_heads // self.num_heads
         | 
| 398 | 
            +
                    x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
         | 
| 399 | 
            +
                    x = x.permute(0, 2, 1, 3)
         | 
| 400 | 
            +
                    return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
         | 
| 401 | 
            +
             | 
| 402 | 
            +
                def forward(
         | 
| 403 | 
            +
                        self,
         | 
| 404 | 
            +
                        hidden_states: torch.Tensor,
         | 
| 405 | 
            +
                        residual: torch.Tensor,
         | 
| 406 | 
            +
                        attention_mask: torch.Tensor,
         | 
| 407 | 
            +
                        layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         | 
| 408 | 
            +
                        use_cache: bool = False,
         | 
| 409 | 
            +
                        output_attentions: bool = False,
         | 
| 410 | 
            +
                ):
         | 
| 411 | 
            +
                    hidden_states = hidden_states.transpose(1, 0)
         | 
| 412 | 
            +
                    query_layer = self.query(hidden_states)
         | 
| 413 | 
            +
                    new_tensor_shape = query_layer.size()[:-1] + \
         | 
| 414 | 
            +
                                       (self.num_heads,
         | 
| 415 | 
            +
                                        self.head_dim)
         | 
| 416 | 
            +
                    query_layer = query_layer.view(*new_tensor_shape)
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                    mixed_kv_layer = self.key_value(hidden_states)
         | 
| 419 | 
            +
                    new_tensor_shape = mixed_kv_layer.size()[:-1] + \
         | 
| 420 | 
            +
                                       (self.num_key_value_heads,
         | 
| 421 | 
            +
                                        2 * self.head_dim)
         | 
| 422 | 
            +
                    mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)
         | 
| 423 | 
            +
                    (key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_kv_layer, 2)
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                    output_size = (query_layer.size(1),
         | 
| 426 | 
            +
                                   query_layer.size(2),
         | 
| 427 | 
            +
                                   query_layer.size(0),
         | 
| 428 | 
            +
                                   key_layer.size(0))
         | 
| 429 | 
            +
             | 
| 430 | 
            +
                    query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
         | 
| 431 | 
            +
                    key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
         | 
| 432 | 
            +
             | 
| 433 | 
            +
                    apply_rotary_fn = apply_rotary_pos_emb_torch
         | 
| 434 | 
            +
             | 
| 435 | 
            +
                    seq_len = key_layer.shape[0]
         | 
| 436 | 
            +
                    offset = 0
         | 
| 437 | 
            +
             | 
| 438 | 
            +
                    if use_cache and layer_past != None:
         | 
| 439 | 
            +
                        past_key, past_value = layer_past
         | 
| 440 | 
            +
                        offset = past_key.shape[0]
         | 
| 441 | 
            +
                        seq_len += offset
         | 
| 442 | 
            +
             | 
| 443 | 
            +
                    cos, sin = self.rotary_emb(value_layer, seq_len=seq_len)
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                    query_layer, key_layer = apply_rotary_fn(query_layer, key_layer, cos, sin, offset=offset)
         | 
| 446 | 
            +
                    if use_cache:
         | 
| 447 | 
            +
                        if layer_past != None:
         | 
| 448 | 
            +
                            past_key, past_value = layer_past
         | 
| 449 | 
            +
                            key_layer = torch.cat((past_key, key_layer[-1, ...].unsqueeze(0)), dim=0)
         | 
| 450 | 
            +
                            value_layer = torch.cat((past_value, value_layer[-1, ...].unsqueeze(0)), dim=0)
         | 
| 451 | 
            +
                        layer_past = key_layer, value_layer
         | 
| 452 | 
            +
                    s, bz, head, dim = value_layer.shape
         | 
| 453 | 
            +
                    s_key = key_layer.shape[0]
         | 
| 454 | 
            +
                    s_query = query_layer.shape[0]
         | 
| 455 | 
            +
                    query_layer = query_layer.reshape((s_query, bz, head, dim))
         | 
| 456 | 
            +
                    key_layer = key_layer.reshape((s_key, bz, head, dim))
         | 
| 457 | 
            +
             | 
| 458 | 
            +
                    if self.config.flash_attn:
         | 
| 459 | 
            +
                        q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous() for x in
         | 
| 460 | 
            +
                                   (query_layer, key_layer, value_layer)]
         | 
| 461 | 
            +
                        context_layer = self.core_attention_flash(q, k, v)
         | 
| 462 | 
            +
                        context_layer = rearrange(context_layer, 'b s h d -> b s (h d)').contiguous()
         | 
| 463 | 
            +
                    else:
         | 
| 464 | 
            +
                        ##[sq, b, np, hn] -> [sq, b * np, hn]
         | 
| 465 | 
            +
                        query_layer = query_layer.reshape(s_query, bz * self.num_heads, dim)
         | 
| 466 | 
            +
                        # [sk, b, np, hn] -> [sk, b * np, hn]
         | 
| 467 | 
            +
                        key_layer = key_layer.reshape(s_key, bz * self.num_heads, dim)
         | 
| 468 | 
            +
                        matmul_result = self.inv_norm_factor * torch.einsum('bik,bkj->bij', query_layer.transpose(0, 1),
         | 
| 469 | 
            +
                                                                            key_layer.transpose(0, 1).transpose(1, 2))
         | 
| 470 | 
            +
             | 
| 471 | 
            +
                        attention_scores = matmul_result.view(bz, self.num_heads, s_query, s_key)
         | 
| 472 | 
            +
             | 
| 473 | 
            +
                        input_dtype = attention_scores.dtype
         | 
| 474 | 
            +
                        if input_dtype == torch.float16:
         | 
| 475 | 
            +
                            attention_scores = attention_scores.to(torch.float)
         | 
| 476 | 
            +
                        attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
         | 
| 477 | 
            +
                        attention_probs = F.softmax(attn_weights, dim=-1).to(input_dtype)  ##dtype = torch.float32
         | 
| 478 | 
            +
                        attention_probs = self.attention_dropout(attention_probs)
         | 
| 479 | 
            +
                        attention_probs_reshaped = attention_probs.view(bz * self.num_heads, s_query, s_key)
         | 
| 480 | 
            +
             | 
| 481 | 
            +
                        value_layer = value_layer.reshape(s_key, bz * self.num_heads, dim)
         | 
| 482 | 
            +
                        context_layer = torch.bmm(attention_probs_reshaped, value_layer.transpose(0, 1))
         | 
| 483 | 
            +
                        context_layer = self._merge_heads(context_layer)
         | 
| 484 | 
            +
             | 
| 485 | 
            +
                    output_tensor = self.dense(context_layer)
         | 
| 486 | 
            +
             | 
| 487 | 
            +
                    output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training)
         | 
| 488 | 
            +
                    present = None
         | 
| 489 | 
            +
                    outputs = (output_tensor, present)
         | 
| 490 | 
            +
                    if output_attentions:
         | 
| 491 | 
            +
                        outputs += (attention_probs,)
         | 
| 492 | 
            +
             | 
| 493 | 
            +
                    return output_tensor, layer_past
         | 
| 494 | 
            +
             | 
| 495 | 
            +
             | 
| 496 | 
            +
            class TelechatMLP(nn.Module):
         | 
| 497 | 
            +
                def __init__(self, config: TelechatConfig):
         | 
| 498 | 
            +
                    super().__init__()
         | 
| 499 | 
            +
                    hidden_size = config.hidden_size
         | 
| 500 | 
            +
                    self.gate_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False)
         | 
| 501 | 
            +
                    self.up_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False)
         | 
| 502 | 
            +
                    self.down_proj = nn.Linear(config.ffn_hidden_size, hidden_size, bias=True)
         | 
| 503 | 
            +
                    self.hidden_dropout = config.hidden_dropout
         | 
| 504 | 
            +
             | 
| 505 | 
            +
                def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
         | 
| 506 | 
            +
                    intermediate_output = self.down_proj(F.silu(self.gate_proj(hidden_states)) * self.up_proj(hidden_states))
         | 
| 507 | 
            +
                    output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)
         | 
| 508 | 
            +
                    return output
         | 
| 509 | 
            +
             | 
| 510 | 
            +
             | 
| 511 | 
            +
            class TelechatBlock(nn.Module):
         | 
| 512 | 
            +
                def __init__(self, config: TelechatConfig, layer_idx):
         | 
| 513 | 
            +
                    super().__init__()
         | 
| 514 | 
            +
                    hidden_size = config.hidden_size
         | 
| 515 | 
            +
             | 
| 516 | 
            +
                    self.input_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon)
         | 
| 517 | 
            +
                    self.num_heads = config.n_head
         | 
| 518 | 
            +
                    self.layer_idx = layer_idx
         | 
| 519 | 
            +
                    self.self_attention = TelechatAttention(config, layer_idx)
         | 
| 520 | 
            +
                    self.post_attention_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon)
         | 
| 521 | 
            +
             | 
| 522 | 
            +
                    self.mlp = TelechatMLP(config)
         | 
| 523 | 
            +
             | 
| 524 | 
            +
                    self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
         | 
| 525 | 
            +
                    self.hidden_dropout = config.hidden_dropout
         | 
| 526 | 
            +
             | 
| 527 | 
            +
                def forward(
         | 
| 528 | 
            +
                        self,
         | 
| 529 | 
            +
                        hidden_states: torch.Tensor,
         | 
| 530 | 
            +
                        attention_mask: torch.Tensor,
         | 
| 531 | 
            +
                        layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         | 
| 532 | 
            +
                        use_cache: bool = False,
         | 
| 533 | 
            +
                        output_attentions: bool = False,
         | 
| 534 | 
            +
                ):
         | 
| 535 | 
            +
                    layernorm_output = self.input_layernorm(hidden_states)
         | 
| 536 | 
            +
                    if self.apply_residual_connection_post_layernorm:
         | 
| 537 | 
            +
                        residual = layernorm_output
         | 
| 538 | 
            +
                    else:
         | 
| 539 | 
            +
                        residual = hidden_states
         | 
| 540 | 
            +
             | 
| 541 | 
            +
                    attn_outputs = self.self_attention(
         | 
| 542 | 
            +
                        layernorm_output,
         | 
| 543 | 
            +
                        residual,
         | 
| 544 | 
            +
                        layer_past=layer_past,
         | 
| 545 | 
            +
                        attention_mask=attention_mask,
         | 
| 546 | 
            +
                        use_cache=use_cache,
         | 
| 547 | 
            +
                        output_attentions=output_attentions,
         | 
| 548 | 
            +
                    )
         | 
| 549 | 
            +
             | 
| 550 | 
            +
                    attention_output = attn_outputs[0]
         | 
| 551 | 
            +
                    outputs = attn_outputs[1:]
         | 
| 552 | 
            +
                    layernorm_output = self.post_attention_layernorm(attention_output)
         | 
| 553 | 
            +
             | 
| 554 | 
            +
                    if self.apply_residual_connection_post_layernorm:
         | 
| 555 | 
            +
                        residual = layernorm_output
         | 
| 556 | 
            +
                    else:
         | 
| 557 | 
            +
                        residual = attention_output
         | 
| 558 | 
            +
                    output = self.mlp(layernorm_output, residual)
         | 
| 559 | 
            +
             | 
| 560 | 
            +
                    if use_cache:
         | 
| 561 | 
            +
                        outputs = (output,) + outputs
         | 
| 562 | 
            +
                    else:
         | 
| 563 | 
            +
                        outputs = (output,) + outputs[1:]
         | 
| 564 | 
            +
             | 
| 565 | 
            +
                    return outputs
         | 
| 566 | 
            +
             | 
| 567 | 
            +
             | 
| 568 | 
            +
            class TelechatPreTrainedModel(PreTrainedModel):
         | 
| 569 | 
            +
                config_class = TelechatConfig
         | 
| 570 | 
            +
                base_model_prefix = "transformer"
         | 
| 571 | 
            +
                supports_gradient_checkpointing = True
         | 
| 572 | 
            +
                _no_split_modules = ["TelechatBlock"]
         | 
| 573 | 
            +
                _skip_keys_device_placement = "past_key_values"
         | 
| 574 | 
            +
             | 
| 575 | 
            +
                def __init__(self, *inputs, **kwargs):
         | 
| 576 | 
            +
                    super().__init__(*inputs, **kwargs)
         | 
| 577 | 
            +
             | 
| 578 | 
            +
                def _init_weights(self, module: nn.Module):
         | 
| 579 | 
            +
                    """Initialize the weights."""
         | 
| 580 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 581 | 
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         | 
| 582 | 
            +
                        if module.bias is not None:
         | 
| 583 | 
            +
                            module.bias.data.zero_()
         | 
| 584 | 
            +
             | 
| 585 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 586 | 
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         | 
| 587 | 
            +
                        if module.padding_idx is not None:
         | 
| 588 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 589 | 
            +
             | 
| 590 | 
            +
                    elif isinstance(module, LayerNorm):
         | 
| 591 | 
            +
                        module.bias.data.zero_()
         | 
| 592 | 
            +
                        module.weight.data.fill_(1.0)
         | 
| 593 | 
            +
             | 
| 594 | 
            +
                def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
         | 
| 595 | 
            +
                    if isinstance(module, TelechatModel):
         | 
| 596 | 
            +
                        module.gradient_checkpointing = value
         | 
| 597 | 
            +
             | 
| 598 | 
            +
             | 
| 599 | 
            +
            class TelechatModel(TelechatPreTrainedModel):
         | 
| 600 | 
            +
                def __init__(self, config: TelechatConfig):
         | 
| 601 | 
            +
                    super().__init__(config)
         | 
| 602 | 
            +
             | 
| 603 | 
            +
                    self.embed_dim = config.hidden_size
         | 
| 604 | 
            +
                    self.num_heads = config.n_head
         | 
| 605 | 
            +
                    self.config = config
         | 
| 606 | 
            +
                    self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
         | 
| 607 | 
            +
                    if self.config.embed_layernorm:
         | 
| 608 | 
            +
                        self.word_embeddings_layernorm = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon)
         | 
| 609 | 
            +
             | 
| 610 | 
            +
                    self.h = nn.ModuleList([TelechatBlock(config, _) for _ in range(config.num_hidden_layers)])
         | 
| 611 | 
            +
                    self.ln_f = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon)
         | 
| 612 | 
            +
                    self.gradient_checkpointing = False
         | 
| 613 | 
            +
                    self.post_init()
         | 
| 614 | 
            +
             | 
| 615 | 
            +
                def get_input_embeddings(self):
         | 
| 616 | 
            +
                    return self.word_embeddings
         | 
| 617 | 
            +
             | 
| 618 | 
            +
                def _prepare_attn_mask(
         | 
| 619 | 
            +
                        self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
         | 
| 620 | 
            +
                ) -> torch.BoolTensor:
         | 
| 621 | 
            +
                    combined_attention_mask = None
         | 
| 622 | 
            +
                    device = attention_mask.device
         | 
| 623 | 
            +
                    _, src_length = input_shape
         | 
| 624 | 
            +
             | 
| 625 | 
            +
                    if src_length > 1:
         | 
| 626 | 
            +
                        combined_attention_mask = _make_causal_mask(
         | 
| 627 | 
            +
                            input_shape, device=device, past_key_values_length=past_key_values_length
         | 
| 628 | 
            +
                        )
         | 
| 629 | 
            +
                    expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
         | 
| 630 | 
            +
                    combined_attention_mask = (
         | 
| 631 | 
            +
                        expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
         | 
| 632 | 
            +
                    )
         | 
| 633 | 
            +
             | 
| 634 | 
            +
                    return combined_attention_mask
         | 
| 635 | 
            +
             | 
| 636 | 
            +
                def set_input_embeddings(self, new_embeddings: torch.Tensor):
         | 
| 637 | 
            +
                    self.word_embeddings = new_embeddings
         | 
| 638 | 
            +
             | 
| 639 | 
            +
                def forward(
         | 
| 640 | 
            +
                        self,
         | 
| 641 | 
            +
                        input_ids: Optional[torch.LongTensor] = None,
         | 
| 642 | 
            +
                        past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
         | 
| 643 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 644 | 
            +
                        inputs_embeds: Optional[torch.LongTensor] = None,
         | 
| 645 | 
            +
                        use_cache: Optional[bool] = None,
         | 
| 646 | 
            +
                        output_attentions: Optional[bool] = None,
         | 
| 647 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 648 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 649 | 
            +
                        **deprecated_arguments,
         | 
| 650 | 
            +
                ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
         | 
| 651 | 
            +
             | 
| 652 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 653 | 
            +
                    output_hidden_states = (
         | 
| 654 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 655 | 
            +
                    )
         | 
| 656 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 657 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 658 | 
            +
             | 
| 659 | 
            +
                    if input_ids is not None:
         | 
| 660 | 
            +
                        batch_size, seq_length = input_ids.shape
         | 
| 661 | 
            +
                    elif inputs_embeds is not None:
         | 
| 662 | 
            +
                        batch_size, seq_length, _ = inputs_embeds.shape
         | 
| 663 | 
            +
             | 
| 664 | 
            +
                    if past_key_values is None:
         | 
| 665 | 
            +
                        past_key_values = tuple([None] * len(self.h))
         | 
| 666 | 
            +
             | 
| 667 | 
            +
                    if inputs_embeds is None:
         | 
| 668 | 
            +
                        inputs_embeds = self.word_embeddings(input_ids)
         | 
| 669 | 
            +
                    hidden_states = inputs_embeds
         | 
| 670 | 
            +
             | 
| 671 | 
            +
                    if self.config.embed_layernorm:
         | 
| 672 | 
            +
                        hidden_states = self.word_embeddings_layernorm(inputs_embeds)
         | 
| 673 | 
            +
             | 
| 674 | 
            +
                    presents = () if use_cache else None
         | 
| 675 | 
            +
                    all_self_attentions = () if output_attentions else None
         | 
| 676 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 677 | 
            +
             | 
| 678 | 
            +
                    if self.gradient_checkpointing and self.training:
         | 
| 679 | 
            +
                        if use_cache:
         | 
| 680 | 
            +
                            use_cache = False
         | 
| 681 | 
            +
             | 
| 682 | 
            +
                    seq_length_with_past = seq_length
         | 
| 683 | 
            +
                    past_key_values_length = 0
         | 
| 684 | 
            +
                    if past_key_values[0] is not None:
         | 
| 685 | 
            +
                        past_key_values_length = past_key_values[0][0].shape[2]
         | 
| 686 | 
            +
                        seq_length_with_past = seq_length_with_past + past_key_values_length
         | 
| 687 | 
            +
                    if attention_mask is None:
         | 
| 688 | 
            +
                        attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
         | 
| 689 | 
            +
                    else:
         | 
| 690 | 
            +
                        attention_mask = attention_mask.to(hidden_states.device)
         | 
| 691 | 
            +
                    causal_mask = self._prepare_attn_mask(
         | 
| 692 | 
            +
                        attention_mask,
         | 
| 693 | 
            +
                        input_shape=(batch_size, seq_length),
         | 
| 694 | 
            +
                        past_key_values_length=past_key_values_length,
         | 
| 695 | 
            +
                    )
         | 
| 696 | 
            +
             | 
| 697 | 
            +
                    for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
         | 
| 698 | 
            +
                        if output_hidden_states:
         | 
| 699 | 
            +
                            all_hidden_states = all_hidden_states + (hidden_states,)
         | 
| 700 | 
            +
             | 
| 701 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 702 | 
            +
             | 
| 703 | 
            +
                            def create_custom_forward(module):
         | 
| 704 | 
            +
                                def custom_forward(*inputs):
         | 
| 705 | 
            +
                                    # None for past_key_value
         | 
| 706 | 
            +
                                    return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
         | 
| 707 | 
            +
             | 
| 708 | 
            +
                                return custom_forward
         | 
| 709 | 
            +
             | 
| 710 | 
            +
                            outputs = torch.utils.checkpoint.checkpoint(
         | 
| 711 | 
            +
                                create_custom_forward(block),
         | 
| 712 | 
            +
                                hidden_states,
         | 
| 713 | 
            +
                                causal_mask,
         | 
| 714 | 
            +
                                layer_past,
         | 
| 715 | 
            +
                            )
         | 
| 716 | 
            +
                        else:
         | 
| 717 | 
            +
                            outputs = block(
         | 
| 718 | 
            +
                                hidden_states,
         | 
| 719 | 
            +
                                layer_past=layer_past,
         | 
| 720 | 
            +
                                attention_mask=causal_mask,
         | 
| 721 | 
            +
                                use_cache=use_cache,
         | 
| 722 | 
            +
                                output_attentions=output_attentions,
         | 
| 723 | 
            +
                            )
         | 
| 724 | 
            +
             | 
| 725 | 
            +
                        hidden_states = outputs[0]
         | 
| 726 | 
            +
                        if use_cache is True:
         | 
| 727 | 
            +
                            presents = presents + (outputs[1],)
         | 
| 728 | 
            +
             | 
| 729 | 
            +
                        if output_attentions:
         | 
| 730 | 
            +
                            all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
         | 
| 731 | 
            +
                    hidden_states = self.ln_f(hidden_states)
         | 
| 732 | 
            +
                    if output_hidden_states:
         | 
| 733 | 
            +
                        all_hidden_states = all_hidden_states + (hidden_states,)
         | 
| 734 | 
            +
                    if not return_dict:
         | 
| 735 | 
            +
                        return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
         | 
| 736 | 
            +
                    return BaseModelOutputWithPastAndCrossAttentions(
         | 
| 737 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 738 | 
            +
                        past_key_values=presents,
         | 
| 739 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 740 | 
            +
                        attentions=all_self_attentions,
         | 
| 741 | 
            +
                    )
         | 
| 742 | 
            +
             | 
| 743 | 
            +
             | 
| 744 | 
            +
            class TelechatForCausalLM(TelechatPreTrainedModel):
         | 
| 745 | 
            +
                # _tied_weights_keys = ["lm_head.weight"]
         | 
| 746 | 
            +
                _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
         | 
| 747 | 
            +
             | 
| 748 | 
            +
                def __init__(self, config: TelechatConfig):
         | 
| 749 | 
            +
                    super().__init__(config)
         | 
| 750 | 
            +
                    self.transformer = TelechatModel(config)
         | 
| 751 | 
            +
                    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 752 | 
            +
                    self.post_init()
         | 
| 753 | 
            +
             | 
| 754 | 
            +
                def get_output_embeddings(self):
         | 
| 755 | 
            +
                    return self.lm_head
         | 
| 756 | 
            +
             | 
| 757 | 
            +
                def set_output_embeddings(self, new_embeddings: torch.Tensor):
         | 
| 758 | 
            +
                    self.lm_head = new_embeddings
         | 
| 759 | 
            +
             | 
| 760 | 
            +
                def prepare_inputs_for_generation(
         | 
| 761 | 
            +
                        self,
         | 
| 762 | 
            +
                        input_ids: torch.LongTensor,
         | 
| 763 | 
            +
                        past_key_values: Optional[torch.Tensor] = None,
         | 
| 764 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 765 | 
            +
                        inputs_embeds: Optional[torch.Tensor] = None,
         | 
| 766 | 
            +
                        **kwargs,
         | 
| 767 | 
            +
                ) -> dict:
         | 
| 768 | 
            +
                    if past_key_values:
         | 
| 769 | 
            +
                        input_ids = input_ids[:, -1].unsqueeze(-1)
         | 
| 770 | 
            +
                    if inputs_embeds is not None and past_key_values is None:
         | 
| 771 | 
            +
                        model_inputs = {"inputs_embeds": inputs_embeds}
         | 
| 772 | 
            +
                    else:
         | 
| 773 | 
            +
                        model_inputs = {"input_ids": input_ids}
         | 
| 774 | 
            +
             | 
| 775 | 
            +
                    model_inputs.update(
         | 
| 776 | 
            +
                        {
         | 
| 777 | 
            +
                            "past_key_values": past_key_values,
         | 
| 778 | 
            +
                            "use_cache": kwargs.get("use_cache"),
         | 
| 779 | 
            +
                            "attention_mask": attention_mask,
         | 
| 780 | 
            +
                        }
         | 
| 781 | 
            +
                    )
         | 
| 782 | 
            +
                    return model_inputs
         | 
| 783 | 
            +
             | 
| 784 | 
            +
                def forward(
         | 
| 785 | 
            +
                        self,
         | 
| 786 | 
            +
                        input_ids: Optional[torch.LongTensor] = None,
         | 
| 787 | 
            +
                        past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
         | 
| 788 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 789 | 
            +
                        inputs_embeds: Optional[torch.Tensor] = None,
         | 
| 790 | 
            +
                        labels: Optional[torch.Tensor] = None,
         | 
| 791 | 
            +
                        use_cache: Optional[bool] = None,
         | 
| 792 | 
            +
                        output_attentions: Optional[bool] = None,
         | 
| 793 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 794 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 795 | 
            +
                        **deprecated_arguments,
         | 
| 796 | 
            +
                ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
         | 
| 797 | 
            +
             | 
| 798 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 799 | 
            +
             | 
| 800 | 
            +
                    transformer_outputs = self.transformer(
         | 
| 801 | 
            +
                        input_ids,
         | 
| 802 | 
            +
                        past_key_values=past_key_values,
         | 
| 803 | 
            +
                        attention_mask=attention_mask,
         | 
| 804 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 805 | 
            +
                        use_cache=use_cache,
         | 
| 806 | 
            +
                        output_attentions=output_attentions,
         | 
| 807 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 808 | 
            +
                        return_dict=return_dict,
         | 
| 809 | 
            +
                    )
         | 
| 810 | 
            +
                    hidden_states = transformer_outputs[0]
         | 
| 811 | 
            +
                    lm_logits = self.lm_head(hidden_states)
         | 
| 812 | 
            +
             | 
| 813 | 
            +
                    loss = None
         | 
| 814 | 
            +
                    if labels is not None:
         | 
| 815 | 
            +
                        labels = labels.to(lm_logits.device)
         | 
| 816 | 
            +
                        shift_logits = lm_logits[..., :-1, :].contiguous()
         | 
| 817 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 818 | 
            +
                        batch_size, seq_length, vocab_size = shift_logits.shape
         | 
| 819 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 820 | 
            +
                        loss = loss_fct(
         | 
| 821 | 
            +
                            shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
         | 
| 822 | 
            +
                        )
         | 
| 823 | 
            +
             | 
| 824 | 
            +
                    if not return_dict:
         | 
| 825 | 
            +
                        output = (lm_logits,) + transformer_outputs[1:]
         | 
| 826 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 827 | 
            +
             | 
| 828 | 
            +
                    return CausalLMOutputWithCrossAttentions(
         | 
| 829 | 
            +
                        loss=loss,
         | 
| 830 | 
            +
                        logits=lm_logits,
         | 
| 831 | 
            +
                        past_key_values=transformer_outputs.past_key_values,
         | 
| 832 | 
            +
                        hidden_states=transformer_outputs.hidden_states,
         | 
| 833 | 
            +
                        attentions=transformer_outputs.attentions,
         | 
| 834 | 
            +
                    )
         | 
| 835 | 
            +
             | 
| 836 | 
            +
                def chat(self, tokenizer, question: str = '', history: Union[List[Dict], History] = None, stream: bool = False,
         | 
| 837 | 
            +
                         generation_config: Optional[GenerationConfig] = None, **kwargs):
         | 
| 838 | 
            +
                    """
         | 
| 839 | 
            +
                    Args:
         | 
| 840 | 
            +
                        tokenizer:  the tokenizer of  telechat
         | 
| 841 | 
            +
                        question: question which the model reply in this turn
         | 
| 842 | 
            +
                        history: history which will format the input for telechat
         | 
| 843 | 
            +
                        stream: if return the full text at last or yield the text in token
         | 
| 844 | 
            +
                        generation_config:  configuration for generation
         | 
| 845 | 
            +
                        **kwargs: args which will update the generation config or pass to model forward
         | 
| 846 | 
            +
                    """
         | 
| 847 | 
            +
                    generation_config = generation_config or self.generation_config
         | 
| 848 | 
            +
                    if not generation_config:
         | 
| 849 | 
            +
                        logger.error("generation_config is None")
         | 
| 850 | 
            +
                        raise ValueError("generation_config must not be None")
         | 
| 851 | 
            +
                    if not question:
         | 
| 852 | 
            +
                        logger.error("question is empty")
         | 
| 853 | 
            +
                        raise ValueError("question must not be empty")
         | 
| 854 | 
            +
                    if history is None:
         | 
| 855 | 
            +
                        history = []
         | 
| 856 | 
            +
             | 
| 857 | 
            +
                    # we update and check generate_config here for building inputs.
         | 
| 858 | 
            +
             | 
| 859 | 
            +
                    generation_config = copy.deepcopy(generation_config)
         | 
| 860 | 
            +
                    user_id = generation_config.user_token_id
         | 
| 861 | 
            +
                    bot_id = generation_config.bot_token_id
         | 
| 862 | 
            +
                    model_kwargs = generation_config.update(**kwargs)
         | 
| 863 | 
            +
                    generation_config.validate()
         | 
| 864 | 
            +
             | 
| 865 | 
            +
                    # transfer to History
         | 
| 866 | 
            +
                    if not isinstance(history, History):
         | 
| 867 | 
            +
                        history = History(tokenizer, history)
         | 
| 868 | 
            +
             | 
| 869 | 
            +
                    inputs = self.build_inputs_for_chat(tokenizer, question, history, generation_config, user_id, bot_id)
         | 
| 870 | 
            +
                    history.append({"role": "user", "content": question})
         | 
| 871 | 
            +
                    if stream:
         | 
| 872 | 
            +
                        streamer = TelechatIterTextStreamer(tokenizer, history,skip_prompt=True)
         | 
| 873 | 
            +
                        Thread(target=self.generate, kwargs=dict(
         | 
| 874 | 
            +
                            inputs=inputs.to(self.device), streamer=streamer,
         | 
| 875 | 
            +
                            generation_config=generation_config, **model_kwargs
         | 
| 876 | 
            +
                        )).start()
         | 
| 877 | 
            +
                        return streamer
         | 
| 878 | 
            +
                    else:
         | 
| 879 | 
            +
                        outputs = self.generate(inputs.to(self.device), generation_config=generation_config, **model_kwargs)
         | 
| 880 | 
            +
                        response = tokenizer.decode(outputs[0][len(inputs[0]):-1])
         | 
| 881 | 
            +
                        history.append({"role": "bot", "content": response})
         | 
| 882 | 
            +
                        return response, history
         | 
| 883 | 
            +
             | 
| 884 | 
            +
                def build_inputs_for_chat(self, tokenizer, question, history, generation_config, usr_id, bot_id):
         | 
| 885 | 
            +
                    """
         | 
| 886 | 
            +
                    check history and  build inputs here
         | 
| 887 | 
            +
                    """
         | 
| 888 | 
            +
                    # first tokenize question
         | 
| 889 | 
            +
                    q_token = tokenizer(question)
         | 
| 890 | 
            +
                    qa_history = copy.deepcopy(history)
         | 
| 891 | 
            +
             | 
| 892 | 
            +
                    # get the max length we should build our inputs in
         | 
| 893 | 
            +
                    model_max_length = self.config.seq_length
         | 
| 894 | 
            +
                    build_max_length = max(0, model_max_length - generation_config.max_new_tokens) \
         | 
| 895 | 
            +
                        if generation_config.max_new_tokens else max(0, generation_config.max_length)
         | 
| 896 | 
            +
                    if build_max_length < 3:
         | 
| 897 | 
            +
                        logger.warning("the model can not meet the  requirements of input length,Please check config")
         | 
| 898 | 
            +
                        raise ValueError("")
         | 
| 899 | 
            +
             | 
| 900 | 
            +
                    # trunc left
         | 
| 901 | 
            +
                    input_tokens = [usr_id] + q_token["input_ids"][-build_max_length + 1:] + [bot_id]
         | 
| 902 | 
            +
                    length = len(input_tokens)
         | 
| 903 | 
            +
             | 
| 904 | 
            +
                    while len(qa_history) != 0:
         | 
| 905 | 
            +
                        message = qa_history.pop()
         | 
| 906 | 
            +
                        if message["role"] == "user":
         | 
| 907 | 
            +
                            tokens = [usr_id] + message["input_ids"]
         | 
| 908 | 
            +
                        elif message["role"] == "bot":
         | 
| 909 | 
            +
                            tokens = [bot_id] + message["input_ids"] + [generation_config.eos_token_id]
         | 
| 910 | 
            +
                        else:
         | 
| 911 | 
            +
                            tokens = []
         | 
| 912 | 
            +
                        if len(tokens) + length >= build_max_length:
         | 
| 913 | 
            +
                            break
         | 
| 914 | 
            +
                        else:
         | 
| 915 | 
            +
                            input_tokens = tokens + input_tokens
         | 
| 916 | 
            +
             | 
| 917 | 
            +
                    return torch.tensor([input_tokens], dtype=torch.int64)
         | 
    	
        pytorch_model.bin.index.json
    ADDED
    
    | @@ -0,0 +1,309 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "metadata": {
         | 
| 3 | 
            +
                "total_size": 14400036864
         | 
| 4 | 
            +
              },
         | 
| 5 | 
            +
              "weight_map": {
         | 
| 6 | 
            +
                "h.0.input_layernorm.weight": "pytorch_model_00002-of-00032.bin",
         | 
| 7 | 
            +
                "h.0.mlp.down_proj.bias": "pytorch_model_00002-of-00032.bin",
         | 
| 8 | 
            +
                "h.0.mlp.down_proj.weight": "pytorch_model_00002-of-00032.bin",
         | 
| 9 | 
            +
                "h.0.mlp.gate_proj.weight": "pytorch_model_00002-of-00032.bin",
         | 
| 10 | 
            +
                "h.0.mlp.up_proj.weight": "pytorch_model_00002-of-00032.bin",
         | 
| 11 | 
            +
                "h.0.post_attention_layernorm.weight": "pytorch_model_00002-of-00032.bin",
         | 
| 12 | 
            +
                "h.0.self_attention.dense.bias": "pytorch_model_00002-of-00032.bin",
         | 
| 13 | 
            +
                "h.0.self_attention.dense.weight": "pytorch_model_00002-of-00032.bin",
         | 
| 14 | 
            +
                "h.0.self_attention.key_value.weight": "pytorch_model_00002-of-00032.bin",
         | 
| 15 | 
            +
                "h.0.self_attention.query.weight": "pytorch_model_00002-of-00032.bin",
         | 
| 16 | 
            +
                "h.1.input_layernorm.weight": "pytorch_model_00003-of-00032.bin",
         | 
| 17 | 
            +
                "h.1.mlp.down_proj.bias": "pytorch_model_00003-of-00032.bin",
         | 
| 18 | 
            +
                "h.1.mlp.down_proj.weight": "pytorch_model_00003-of-00032.bin",
         | 
| 19 | 
            +
                "h.1.mlp.gate_proj.weight": "pytorch_model_00003-of-00032.bin",
         | 
| 20 | 
            +
                "h.1.mlp.up_proj.weight": "pytorch_model_00003-of-00032.bin",
         | 
| 21 | 
            +
                "h.1.post_attention_layernorm.weight": "pytorch_model_00003-of-00032.bin",
         | 
| 22 | 
            +
                "h.1.self_attention.dense.bias": "pytorch_model_00003-of-00032.bin",
         | 
| 23 | 
            +
                "h.1.self_attention.dense.weight": "pytorch_model_00003-of-00032.bin",
         | 
| 24 | 
            +
                "h.1.self_attention.key_value.weight": "pytorch_model_00003-of-00032.bin",
         | 
| 25 | 
            +
                "h.1.self_attention.query.weight": "pytorch_model_00003-of-00032.bin",
         | 
| 26 | 
            +
                "h.10.input_layernorm.weight": "pytorch_model_00012-of-00032.bin",
         | 
| 27 | 
            +
                "h.10.mlp.down_proj.bias": "pytorch_model_00012-of-00032.bin",
         | 
| 28 | 
            +
                "h.10.mlp.down_proj.weight": "pytorch_model_00012-of-00032.bin",
         | 
| 29 | 
            +
                "h.10.mlp.gate_proj.weight": "pytorch_model_00012-of-00032.bin",
         | 
| 30 | 
            +
                "h.10.mlp.up_proj.weight": "pytorch_model_00012-of-00032.bin",
         | 
| 31 | 
            +
                "h.10.post_attention_layernorm.weight": "pytorch_model_00012-of-00032.bin",
         | 
| 32 | 
            +
                "h.10.self_attention.dense.bias": "pytorch_model_00012-of-00032.bin",
         | 
| 33 | 
            +
                "h.10.self_attention.dense.weight": "pytorch_model_00012-of-00032.bin",
         | 
| 34 | 
            +
                "h.10.self_attention.key_value.weight": "pytorch_model_00012-of-00032.bin",
         | 
| 35 | 
            +
                "h.10.self_attention.query.weight": "pytorch_model_00012-of-00032.bin",
         | 
| 36 | 
            +
                "h.11.input_layernorm.weight": "pytorch_model_00013-of-00032.bin",
         | 
| 37 | 
            +
                "h.11.mlp.down_proj.bias": "pytorch_model_00013-of-00032.bin",
         | 
| 38 | 
            +
                "h.11.mlp.down_proj.weight": "pytorch_model_00013-of-00032.bin",
         | 
| 39 | 
            +
                "h.11.mlp.gate_proj.weight": "pytorch_model_00013-of-00032.bin",
         | 
| 40 | 
            +
                "h.11.mlp.up_proj.weight": "pytorch_model_00013-of-00032.bin",
         | 
| 41 | 
            +
                "h.11.post_attention_layernorm.weight": "pytorch_model_00013-of-00032.bin",
         | 
| 42 | 
            +
                "h.11.self_attention.dense.bias": "pytorch_model_00013-of-00032.bin",
         | 
| 43 | 
            +
                "h.11.self_attention.dense.weight": "pytorch_model_00013-of-00032.bin",
         | 
| 44 | 
            +
                "h.11.self_attention.key_value.weight": "pytorch_model_00013-of-00032.bin",
         | 
| 45 | 
            +
                "h.11.self_attention.query.weight": "pytorch_model_00013-of-00032.bin",
         | 
| 46 | 
            +
                "h.12.input_layernorm.weight": "pytorch_model_00014-of-00032.bin",
         | 
| 47 | 
            +
                "h.12.mlp.down_proj.bias": "pytorch_model_00014-of-00032.bin",
         | 
| 48 | 
            +
                "h.12.mlp.down_proj.weight": "pytorch_model_00014-of-00032.bin",
         | 
| 49 | 
            +
                "h.12.mlp.gate_proj.weight": "pytorch_model_00014-of-00032.bin",
         | 
| 50 | 
            +
                "h.12.mlp.up_proj.weight": "pytorch_model_00014-of-00032.bin",
         | 
| 51 | 
            +
                "h.12.post_attention_layernorm.weight": "pytorch_model_00014-of-00032.bin",
         | 
| 52 | 
            +
                "h.12.self_attention.dense.bias": "pytorch_model_00014-of-00032.bin",
         | 
| 53 | 
            +
                "h.12.self_attention.dense.weight": "pytorch_model_00014-of-00032.bin",
         | 
| 54 | 
            +
                "h.12.self_attention.key_value.weight": "pytorch_model_00014-of-00032.bin",
         | 
| 55 | 
            +
                "h.12.self_attention.query.weight": "pytorch_model_00014-of-00032.bin",
         | 
| 56 | 
            +
                "h.13.input_layernorm.weight": "pytorch_model_00015-of-00032.bin",
         | 
| 57 | 
            +
                "h.13.mlp.down_proj.bias": "pytorch_model_00015-of-00032.bin",
         | 
| 58 | 
            +
                "h.13.mlp.down_proj.weight": "pytorch_model_00015-of-00032.bin",
         | 
| 59 | 
            +
                "h.13.mlp.gate_proj.weight": "pytorch_model_00015-of-00032.bin",
         | 
| 60 | 
            +
                "h.13.mlp.up_proj.weight": "pytorch_model_00015-of-00032.bin",
         | 
| 61 | 
            +
                "h.13.post_attention_layernorm.weight": "pytorch_model_00015-of-00032.bin",
         | 
| 62 | 
            +
                "h.13.self_attention.dense.bias": "pytorch_model_00015-of-00032.bin",
         | 
| 63 | 
            +
                "h.13.self_attention.dense.weight": "pytorch_model_00015-of-00032.bin",
         | 
| 64 | 
            +
                "h.13.self_attention.key_value.weight": "pytorch_model_00015-of-00032.bin",
         | 
| 65 | 
            +
                "h.13.self_attention.query.weight": "pytorch_model_00015-of-00032.bin",
         | 
| 66 | 
            +
                "h.14.input_layernorm.weight": "pytorch_model_00016-of-00032.bin",
         | 
| 67 | 
            +
                "h.14.mlp.down_proj.bias": "pytorch_model_00016-of-00032.bin",
         | 
| 68 | 
            +
                "h.14.mlp.down_proj.weight": "pytorch_model_00016-of-00032.bin",
         | 
| 69 | 
            +
                "h.14.mlp.gate_proj.weight": "pytorch_model_00016-of-00032.bin",
         | 
| 70 | 
            +
                "h.14.mlp.up_proj.weight": "pytorch_model_00016-of-00032.bin",
         | 
| 71 | 
            +
                "h.14.post_attention_layernorm.weight": "pytorch_model_00016-of-00032.bin",
         | 
| 72 | 
            +
                "h.14.self_attention.dense.bias": "pytorch_model_00016-of-00032.bin",
         | 
| 73 | 
            +
                "h.14.self_attention.dense.weight": "pytorch_model_00016-of-00032.bin",
         | 
| 74 | 
            +
                "h.14.self_attention.key_value.weight": "pytorch_model_00016-of-00032.bin",
         | 
| 75 | 
            +
                "h.14.self_attention.query.weight": "pytorch_model_00016-of-00032.bin",
         | 
| 76 | 
            +
                "h.15.input_layernorm.weight": "pytorch_model_00017-of-00032.bin",
         | 
| 77 | 
            +
                "h.15.mlp.down_proj.bias": "pytorch_model_00017-of-00032.bin",
         | 
| 78 | 
            +
                "h.15.mlp.down_proj.weight": "pytorch_model_00017-of-00032.bin",
         | 
| 79 | 
            +
                "h.15.mlp.gate_proj.weight": "pytorch_model_00017-of-00032.bin",
         | 
| 80 | 
            +
                "h.15.mlp.up_proj.weight": "pytorch_model_00017-of-00032.bin",
         | 
| 81 | 
            +
                "h.15.post_attention_layernorm.weight": "pytorch_model_00017-of-00032.bin",
         | 
| 82 | 
            +
                "h.15.self_attention.dense.bias": "pytorch_model_00017-of-00032.bin",
         | 
| 83 | 
            +
                "h.15.self_attention.dense.weight": "pytorch_model_00017-of-00032.bin",
         | 
| 84 | 
            +
                "h.15.self_attention.key_value.weight": "pytorch_model_00017-of-00032.bin",
         | 
| 85 | 
            +
                "h.15.self_attention.query.weight": "pytorch_model_00017-of-00032.bin",
         | 
| 86 | 
            +
                "h.16.input_layernorm.weight": "pytorch_model_00018-of-00032.bin",
         | 
| 87 | 
            +
                "h.16.mlp.down_proj.bias": "pytorch_model_00018-of-00032.bin",
         | 
| 88 | 
            +
                "h.16.mlp.down_proj.weight": "pytorch_model_00018-of-00032.bin",
         | 
| 89 | 
            +
                "h.16.mlp.gate_proj.weight": "pytorch_model_00018-of-00032.bin",
         | 
| 90 | 
            +
                "h.16.mlp.up_proj.weight": "pytorch_model_00018-of-00032.bin",
         | 
| 91 | 
            +
                "h.16.post_attention_layernorm.weight": "pytorch_model_00018-of-00032.bin",
         | 
| 92 | 
            +
                "h.16.self_attention.dense.bias": "pytorch_model_00018-of-00032.bin",
         | 
| 93 | 
            +
                "h.16.self_attention.dense.weight": "pytorch_model_00018-of-00032.bin",
         | 
| 94 | 
            +
                "h.16.self_attention.key_value.weight": "pytorch_model_00018-of-00032.bin",
         | 
| 95 | 
            +
                "h.16.self_attention.query.weight": "pytorch_model_00018-of-00032.bin",
         | 
| 96 | 
            +
                "h.17.input_layernorm.weight": "pytorch_model_00019-of-00032.bin",
         | 
| 97 | 
            +
                "h.17.mlp.down_proj.bias": "pytorch_model_00019-of-00032.bin",
         | 
| 98 | 
            +
                "h.17.mlp.down_proj.weight": "pytorch_model_00019-of-00032.bin",
         | 
| 99 | 
            +
                "h.17.mlp.gate_proj.weight": "pytorch_model_00019-of-00032.bin",
         | 
| 100 | 
            +
                "h.17.mlp.up_proj.weight": "pytorch_model_00019-of-00032.bin",
         | 
| 101 | 
            +
                "h.17.post_attention_layernorm.weight": "pytorch_model_00019-of-00032.bin",
         | 
| 102 | 
            +
                "h.17.self_attention.dense.bias": "pytorch_model_00019-of-00032.bin",
         | 
| 103 | 
            +
                "h.17.self_attention.dense.weight": "pytorch_model_00019-of-00032.bin",
         | 
| 104 | 
            +
                "h.17.self_attention.key_value.weight": "pytorch_model_00019-of-00032.bin",
         | 
| 105 | 
            +
                "h.17.self_attention.query.weight": "pytorch_model_00019-of-00032.bin",
         | 
| 106 | 
            +
                "h.18.input_layernorm.weight": "pytorch_model_00020-of-00032.bin",
         | 
| 107 | 
            +
                "h.18.mlp.down_proj.bias": "pytorch_model_00020-of-00032.bin",
         | 
| 108 | 
            +
                "h.18.mlp.down_proj.weight": "pytorch_model_00020-of-00032.bin",
         | 
| 109 | 
            +
                "h.18.mlp.gate_proj.weight": "pytorch_model_00020-of-00032.bin",
         | 
| 110 | 
            +
                "h.18.mlp.up_proj.weight": "pytorch_model_00020-of-00032.bin",
         | 
| 111 | 
            +
                "h.18.post_attention_layernorm.weight": "pytorch_model_00020-of-00032.bin",
         | 
| 112 | 
            +
                "h.18.self_attention.dense.bias": "pytorch_model_00020-of-00032.bin",
         | 
| 113 | 
            +
                "h.18.self_attention.dense.weight": "pytorch_model_00020-of-00032.bin",
         | 
| 114 | 
            +
                "h.18.self_attention.key_value.weight": "pytorch_model_00020-of-00032.bin",
         | 
| 115 | 
            +
                "h.18.self_attention.query.weight": "pytorch_model_00020-of-00032.bin",
         | 
| 116 | 
            +
                "h.19.input_layernorm.weight": "pytorch_model_00021-of-00032.bin",
         | 
| 117 | 
            +
                "h.19.mlp.down_proj.bias": "pytorch_model_00021-of-00032.bin",
         | 
| 118 | 
            +
                "h.19.mlp.down_proj.weight": "pytorch_model_00021-of-00032.bin",
         | 
| 119 | 
            +
                "h.19.mlp.gate_proj.weight": "pytorch_model_00021-of-00032.bin",
         | 
| 120 | 
            +
                "h.19.mlp.up_proj.weight": "pytorch_model_00021-of-00032.bin",
         | 
| 121 | 
            +
                "h.19.post_attention_layernorm.weight": "pytorch_model_00021-of-00032.bin",
         | 
| 122 | 
            +
                "h.19.self_attention.dense.bias": "pytorch_model_00021-of-00032.bin",
         | 
| 123 | 
            +
                "h.19.self_attention.dense.weight": "pytorch_model_00021-of-00032.bin",
         | 
| 124 | 
            +
                "h.19.self_attention.key_value.weight": "pytorch_model_00021-of-00032.bin",
         | 
| 125 | 
            +
                "h.19.self_attention.query.weight": "pytorch_model_00021-of-00032.bin",
         | 
| 126 | 
            +
                "h.2.input_layernorm.weight": "pytorch_model_00004-of-00032.bin",
         | 
| 127 | 
            +
                "h.2.mlp.down_proj.bias": "pytorch_model_00004-of-00032.bin",
         | 
| 128 | 
            +
                "h.2.mlp.down_proj.weight": "pytorch_model_00004-of-00032.bin",
         | 
| 129 | 
            +
                "h.2.mlp.gate_proj.weight": "pytorch_model_00004-of-00032.bin",
         | 
| 130 | 
            +
                "h.2.mlp.up_proj.weight": "pytorch_model_00004-of-00032.bin",
         | 
| 131 | 
            +
                "h.2.post_attention_layernorm.weight": "pytorch_model_00004-of-00032.bin",
         | 
| 132 | 
            +
                "h.2.self_attention.dense.bias": "pytorch_model_00004-of-00032.bin",
         | 
| 133 | 
            +
                "h.2.self_attention.dense.weight": "pytorch_model_00004-of-00032.bin",
         | 
| 134 | 
            +
                "h.2.self_attention.key_value.weight": "pytorch_model_00004-of-00032.bin",
         | 
| 135 | 
            +
                "h.2.self_attention.query.weight": "pytorch_model_00004-of-00032.bin",
         | 
| 136 | 
            +
                "h.20.input_layernorm.weight": "pytorch_model_00022-of-00032.bin",
         | 
| 137 | 
            +
                "h.20.mlp.down_proj.bias": "pytorch_model_00022-of-00032.bin",
         | 
| 138 | 
            +
                "h.20.mlp.down_proj.weight": "pytorch_model_00022-of-00032.bin",
         | 
| 139 | 
            +
                "h.20.mlp.gate_proj.weight": "pytorch_model_00022-of-00032.bin",
         | 
| 140 | 
            +
                "h.20.mlp.up_proj.weight": "pytorch_model_00022-of-00032.bin",
         | 
| 141 | 
            +
                "h.20.post_attention_layernorm.weight": "pytorch_model_00022-of-00032.bin",
         | 
| 142 | 
            +
                "h.20.self_attention.dense.bias": "pytorch_model_00022-of-00032.bin",
         | 
| 143 | 
            +
                "h.20.self_attention.dense.weight": "pytorch_model_00022-of-00032.bin",
         | 
| 144 | 
            +
                "h.20.self_attention.key_value.weight": "pytorch_model_00022-of-00032.bin",
         | 
| 145 | 
            +
                "h.20.self_attention.query.weight": "pytorch_model_00022-of-00032.bin",
         | 
| 146 | 
            +
                "h.21.input_layernorm.weight": "pytorch_model_00023-of-00032.bin",
         | 
| 147 | 
            +
                "h.21.mlp.down_proj.bias": "pytorch_model_00023-of-00032.bin",
         | 
| 148 | 
            +
                "h.21.mlp.down_proj.weight": "pytorch_model_00023-of-00032.bin",
         | 
| 149 | 
            +
                "h.21.mlp.gate_proj.weight": "pytorch_model_00023-of-00032.bin",
         | 
| 150 | 
            +
                "h.21.mlp.up_proj.weight": "pytorch_model_00023-of-00032.bin",
         | 
| 151 | 
            +
                "h.21.post_attention_layernorm.weight": "pytorch_model_00023-of-00032.bin",
         | 
| 152 | 
            +
                "h.21.self_attention.dense.bias": "pytorch_model_00023-of-00032.bin",
         | 
| 153 | 
            +
                "h.21.self_attention.dense.weight": "pytorch_model_00023-of-00032.bin",
         | 
| 154 | 
            +
                "h.21.self_attention.key_value.weight": "pytorch_model_00023-of-00032.bin",
         | 
| 155 | 
            +
                "h.21.self_attention.query.weight": "pytorch_model_00023-of-00032.bin",
         | 
| 156 | 
            +
                "h.22.input_layernorm.weight": "pytorch_model_00024-of-00032.bin",
         | 
| 157 | 
            +
                "h.22.mlp.down_proj.bias": "pytorch_model_00024-of-00032.bin",
         | 
| 158 | 
            +
                "h.22.mlp.down_proj.weight": "pytorch_model_00024-of-00032.bin",
         | 
| 159 | 
            +
                "h.22.mlp.gate_proj.weight": "pytorch_model_00024-of-00032.bin",
         | 
| 160 | 
            +
                "h.22.mlp.up_proj.weight": "pytorch_model_00024-of-00032.bin",
         | 
| 161 | 
            +
                "h.22.post_attention_layernorm.weight": "pytorch_model_00024-of-00032.bin",
         | 
| 162 | 
            +
                "h.22.self_attention.dense.bias": "pytorch_model_00024-of-00032.bin",
         | 
| 163 | 
            +
                "h.22.self_attention.dense.weight": "pytorch_model_00024-of-00032.bin",
         | 
| 164 | 
            +
                "h.22.self_attention.key_value.weight": "pytorch_model_00024-of-00032.bin",
         | 
| 165 | 
            +
                "h.22.self_attention.query.weight": "pytorch_model_00024-of-00032.bin",
         | 
| 166 | 
            +
                "h.23.input_layernorm.weight": "pytorch_model_00025-of-00032.bin",
         | 
| 167 | 
            +
                "h.23.mlp.down_proj.bias": "pytorch_model_00025-of-00032.bin",
         | 
| 168 | 
            +
                "h.23.mlp.down_proj.weight": "pytorch_model_00025-of-00032.bin",
         | 
| 169 | 
            +
                "h.23.mlp.gate_proj.weight": "pytorch_model_00025-of-00032.bin",
         | 
| 170 | 
            +
                "h.23.mlp.up_proj.weight": "pytorch_model_00025-of-00032.bin",
         | 
| 171 | 
            +
                "h.23.post_attention_layernorm.weight": "pytorch_model_00025-of-00032.bin",
         | 
| 172 | 
            +
                "h.23.self_attention.dense.bias": "pytorch_model_00025-of-00032.bin",
         | 
| 173 | 
            +
                "h.23.self_attention.dense.weight": "pytorch_model_00025-of-00032.bin",
         | 
| 174 | 
            +
                "h.23.self_attention.key_value.weight": "pytorch_model_00025-of-00032.bin",
         | 
| 175 | 
            +
                "h.23.self_attention.query.weight": "pytorch_model_00025-of-00032.bin",
         | 
| 176 | 
            +
                "h.24.input_layernorm.weight": "pytorch_model_00026-of-00032.bin",
         | 
| 177 | 
            +
                "h.24.mlp.down_proj.bias": "pytorch_model_00026-of-00032.bin",
         | 
| 178 | 
            +
                "h.24.mlp.down_proj.weight": "pytorch_model_00026-of-00032.bin",
         | 
| 179 | 
            +
                "h.24.mlp.gate_proj.weight": "pytorch_model_00026-of-00032.bin",
         | 
| 180 | 
            +
                "h.24.mlp.up_proj.weight": "pytorch_model_00026-of-00032.bin",
         | 
| 181 | 
            +
                "h.24.post_attention_layernorm.weight": "pytorch_model_00026-of-00032.bin",
         | 
| 182 | 
            +
                "h.24.self_attention.dense.bias": "pytorch_model_00026-of-00032.bin",
         | 
| 183 | 
            +
                "h.24.self_attention.dense.weight": "pytorch_model_00026-of-00032.bin",
         | 
| 184 | 
            +
                "h.24.self_attention.key_value.weight": "pytorch_model_00026-of-00032.bin",
         | 
| 185 | 
            +
                "h.24.self_attention.query.weight": "pytorch_model_00026-of-00032.bin",
         | 
| 186 | 
            +
                "h.25.input_layernorm.weight": "pytorch_model_00027-of-00032.bin",
         | 
| 187 | 
            +
                "h.25.mlp.down_proj.bias": "pytorch_model_00027-of-00032.bin",
         | 
| 188 | 
            +
                "h.25.mlp.down_proj.weight": "pytorch_model_00027-of-00032.bin",
         | 
| 189 | 
            +
                "h.25.mlp.gate_proj.weight": "pytorch_model_00027-of-00032.bin",
         | 
| 190 | 
            +
                "h.25.mlp.up_proj.weight": "pytorch_model_00027-of-00032.bin",
         | 
| 191 | 
            +
                "h.25.post_attention_layernorm.weight": "pytorch_model_00027-of-00032.bin",
         | 
| 192 | 
            +
                "h.25.self_attention.dense.bias": "pytorch_model_00027-of-00032.bin",
         | 
| 193 | 
            +
                "h.25.self_attention.dense.weight": "pytorch_model_00027-of-00032.bin",
         | 
| 194 | 
            +
                "h.25.self_attention.key_value.weight": "pytorch_model_00027-of-00032.bin",
         | 
| 195 | 
            +
                "h.25.self_attention.query.weight": "pytorch_model_00027-of-00032.bin",
         | 
| 196 | 
            +
                "h.26.input_layernorm.weight": "pytorch_model_00028-of-00032.bin",
         | 
| 197 | 
            +
                "h.26.mlp.down_proj.bias": "pytorch_model_00028-of-00032.bin",
         | 
| 198 | 
            +
                "h.26.mlp.down_proj.weight": "pytorch_model_00028-of-00032.bin",
         | 
| 199 | 
            +
                "h.26.mlp.gate_proj.weight": "pytorch_model_00028-of-00032.bin",
         | 
| 200 | 
            +
                "h.26.mlp.up_proj.weight": "pytorch_model_00028-of-00032.bin",
         | 
| 201 | 
            +
                "h.26.post_attention_layernorm.weight": "pytorch_model_00028-of-00032.bin",
         | 
| 202 | 
            +
                "h.26.self_attention.dense.bias": "pytorch_model_00028-of-00032.bin",
         | 
| 203 | 
            +
                "h.26.self_attention.dense.weight": "pytorch_model_00028-of-00032.bin",
         | 
| 204 | 
            +
                "h.26.self_attention.key_value.weight": "pytorch_model_00028-of-00032.bin",
         | 
| 205 | 
            +
                "h.26.self_attention.query.weight": "pytorch_model_00028-of-00032.bin",
         | 
| 206 | 
            +
                "h.27.input_layernorm.weight": "pytorch_model_00029-of-00032.bin",
         | 
| 207 | 
            +
                "h.27.mlp.down_proj.bias": "pytorch_model_00029-of-00032.bin",
         | 
| 208 | 
            +
                "h.27.mlp.down_proj.weight": "pytorch_model_00029-of-00032.bin",
         | 
| 209 | 
            +
                "h.27.mlp.gate_proj.weight": "pytorch_model_00029-of-00032.bin",
         | 
| 210 | 
            +
                "h.27.mlp.up_proj.weight": "pytorch_model_00029-of-00032.bin",
         | 
| 211 | 
            +
                "h.27.post_attention_layernorm.weight": "pytorch_model_00029-of-00032.bin",
         | 
| 212 | 
            +
                "h.27.self_attention.dense.bias": "pytorch_model_00029-of-00032.bin",
         | 
| 213 | 
            +
                "h.27.self_attention.dense.weight": "pytorch_model_00029-of-00032.bin",
         | 
| 214 | 
            +
                "h.27.self_attention.key_value.weight": "pytorch_model_00029-of-00032.bin",
         | 
| 215 | 
            +
                "h.27.self_attention.query.weight": "pytorch_model_00029-of-00032.bin",
         | 
| 216 | 
            +
                "h.28.input_layernorm.weight": "pytorch_model_00030-of-00032.bin",
         | 
| 217 | 
            +
                "h.28.mlp.down_proj.bias": "pytorch_model_00030-of-00032.bin",
         | 
| 218 | 
            +
                "h.28.mlp.down_proj.weight": "pytorch_model_00030-of-00032.bin",
         | 
| 219 | 
            +
                "h.28.mlp.gate_proj.weight": "pytorch_model_00030-of-00032.bin",
         | 
| 220 | 
            +
                "h.28.mlp.up_proj.weight": "pytorch_model_00030-of-00032.bin",
         | 
| 221 | 
            +
                "h.28.post_attention_layernorm.weight": "pytorch_model_00030-of-00032.bin",
         | 
| 222 | 
            +
                "h.28.self_attention.dense.bias": "pytorch_model_00030-of-00032.bin",
         | 
| 223 | 
            +
                "h.28.self_attention.dense.weight": "pytorch_model_00030-of-00032.bin",
         | 
| 224 | 
            +
                "h.28.self_attention.key_value.weight": "pytorch_model_00030-of-00032.bin",
         | 
| 225 | 
            +
                "h.28.self_attention.query.weight": "pytorch_model_00030-of-00032.bin",
         | 
| 226 | 
            +
                "h.29.input_layernorm.weight": "pytorch_model_00031-of-00032.bin",
         | 
| 227 | 
            +
                "h.29.mlp.down_proj.bias": "pytorch_model_00031-of-00032.bin",
         | 
| 228 | 
            +
                "h.29.mlp.down_proj.weight": "pytorch_model_00031-of-00032.bin",
         | 
| 229 | 
            +
                "h.29.mlp.gate_proj.weight": "pytorch_model_00031-of-00032.bin",
         | 
| 230 | 
            +
                "h.29.mlp.up_proj.weight": "pytorch_model_00031-of-00032.bin",
         | 
| 231 | 
            +
                "h.29.post_attention_layernorm.weight": "pytorch_model_00031-of-00032.bin",
         | 
| 232 | 
            +
                "h.29.self_attention.dense.bias": "pytorch_model_00031-of-00032.bin",
         | 
| 233 | 
            +
                "h.29.self_attention.dense.weight": "pytorch_model_00031-of-00032.bin",
         | 
| 234 | 
            +
                "h.29.self_attention.key_value.weight": "pytorch_model_00031-of-00032.bin",
         | 
| 235 | 
            +
                "h.29.self_attention.query.weight": "pytorch_model_00031-of-00032.bin",
         | 
| 236 | 
            +
                "h.3.input_layernorm.weight": "pytorch_model_00005-of-00032.bin",
         | 
| 237 | 
            +
                "h.3.mlp.down_proj.bias": "pytorch_model_00005-of-00032.bin",
         | 
| 238 | 
            +
                "h.3.mlp.down_proj.weight": "pytorch_model_00005-of-00032.bin",
         | 
| 239 | 
            +
                "h.3.mlp.gate_proj.weight": "pytorch_model_00005-of-00032.bin",
         | 
| 240 | 
            +
                "h.3.mlp.up_proj.weight": "pytorch_model_00005-of-00032.bin",
         | 
| 241 | 
            +
                "h.3.post_attention_layernorm.weight": "pytorch_model_00005-of-00032.bin",
         | 
| 242 | 
            +
                "h.3.self_attention.dense.bias": "pytorch_model_00005-of-00032.bin",
         | 
| 243 | 
            +
                "h.3.self_attention.dense.weight": "pytorch_model_00005-of-00032.bin",
         | 
| 244 | 
            +
                "h.3.self_attention.key_value.weight": "pytorch_model_00005-of-00032.bin",
         | 
| 245 | 
            +
                "h.3.self_attention.query.weight": "pytorch_model_00005-of-00032.bin",
         | 
| 246 | 
            +
                "h.4.input_layernorm.weight": "pytorch_model_00006-of-00032.bin",
         | 
| 247 | 
            +
                "h.4.mlp.down_proj.bias": "pytorch_model_00006-of-00032.bin",
         | 
| 248 | 
            +
                "h.4.mlp.down_proj.weight": "pytorch_model_00006-of-00032.bin",
         | 
| 249 | 
            +
                "h.4.mlp.gate_proj.weight": "pytorch_model_00006-of-00032.bin",
         | 
| 250 | 
            +
                "h.4.mlp.up_proj.weight": "pytorch_model_00006-of-00032.bin",
         | 
| 251 | 
            +
                "h.4.post_attention_layernorm.weight": "pytorch_model_00006-of-00032.bin",
         | 
| 252 | 
            +
                "h.4.self_attention.dense.bias": "pytorch_model_00006-of-00032.bin",
         | 
| 253 | 
            +
                "h.4.self_attention.dense.weight": "pytorch_model_00006-of-00032.bin",
         | 
| 254 | 
            +
                "h.4.self_attention.key_value.weight": "pytorch_model_00006-of-00032.bin",
         | 
| 255 | 
            +
                "h.4.self_attention.query.weight": "pytorch_model_00006-of-00032.bin",
         | 
| 256 | 
            +
                "h.5.input_layernorm.weight": "pytorch_model_00007-of-00032.bin",
         | 
| 257 | 
            +
                "h.5.mlp.down_proj.bias": "pytorch_model_00007-of-00032.bin",
         | 
| 258 | 
            +
                "h.5.mlp.down_proj.weight": "pytorch_model_00007-of-00032.bin",
         | 
| 259 | 
            +
                "h.5.mlp.gate_proj.weight": "pytorch_model_00007-of-00032.bin",
         | 
| 260 | 
            +
                "h.5.mlp.up_proj.weight": "pytorch_model_00007-of-00032.bin",
         | 
| 261 | 
            +
                "h.5.post_attention_layernorm.weight": "pytorch_model_00007-of-00032.bin",
         | 
| 262 | 
            +
                "h.5.self_attention.dense.bias": "pytorch_model_00007-of-00032.bin",
         | 
| 263 | 
            +
                "h.5.self_attention.dense.weight": "pytorch_model_00007-of-00032.bin",
         | 
| 264 | 
            +
                "h.5.self_attention.key_value.weight": "pytorch_model_00007-of-00032.bin",
         | 
| 265 | 
            +
                "h.5.self_attention.query.weight": "pytorch_model_00007-of-00032.bin",
         | 
| 266 | 
            +
                "h.6.input_layernorm.weight": "pytorch_model_00008-of-00032.bin",
         | 
| 267 | 
            +
                "h.6.mlp.down_proj.bias": "pytorch_model_00008-of-00032.bin",
         | 
| 268 | 
            +
                "h.6.mlp.down_proj.weight": "pytorch_model_00008-of-00032.bin",
         | 
| 269 | 
            +
                "h.6.mlp.gate_proj.weight": "pytorch_model_00008-of-00032.bin",
         | 
| 270 | 
            +
                "h.6.mlp.up_proj.weight": "pytorch_model_00008-of-00032.bin",
         | 
| 271 | 
            +
                "h.6.post_attention_layernorm.weight": "pytorch_model_00008-of-00032.bin",
         | 
| 272 | 
            +
                "h.6.self_attention.dense.bias": "pytorch_model_00008-of-00032.bin",
         | 
| 273 | 
            +
                "h.6.self_attention.dense.weight": "pytorch_model_00008-of-00032.bin",
         | 
| 274 | 
            +
                "h.6.self_attention.key_value.weight": "pytorch_model_00008-of-00032.bin",
         | 
| 275 | 
            +
                "h.6.self_attention.query.weight": "pytorch_model_00008-of-00032.bin",
         | 
| 276 | 
            +
                "h.7.input_layernorm.weight": "pytorch_model_00009-of-00032.bin",
         | 
| 277 | 
            +
                "h.7.mlp.down_proj.bias": "pytorch_model_00009-of-00032.bin",
         | 
| 278 | 
            +
                "h.7.mlp.down_proj.weight": "pytorch_model_00009-of-00032.bin",
         | 
| 279 | 
            +
                "h.7.mlp.gate_proj.weight": "pytorch_model_00009-of-00032.bin",
         | 
| 280 | 
            +
                "h.7.mlp.up_proj.weight": "pytorch_model_00009-of-00032.bin",
         | 
| 281 | 
            +
                "h.7.post_attention_layernorm.weight": "pytorch_model_00009-of-00032.bin",
         | 
| 282 | 
            +
                "h.7.self_attention.dense.bias": "pytorch_model_00009-of-00032.bin",
         | 
| 283 | 
            +
                "h.7.self_attention.dense.weight": "pytorch_model_00009-of-00032.bin",
         | 
| 284 | 
            +
                "h.7.self_attention.key_value.weight": "pytorch_model_00009-of-00032.bin",
         | 
| 285 | 
            +
                "h.7.self_attention.query.weight": "pytorch_model_00009-of-00032.bin",
         | 
| 286 | 
            +
                "h.8.input_layernorm.weight": "pytorch_model_00010-of-00032.bin",
         | 
| 287 | 
            +
                "h.8.mlp.down_proj.bias": "pytorch_model_00010-of-00032.bin",
         | 
| 288 | 
            +
                "h.8.mlp.down_proj.weight": "pytorch_model_00010-of-00032.bin",
         | 
| 289 | 
            +
                "h.8.mlp.gate_proj.weight": "pytorch_model_00010-of-00032.bin",
         | 
| 290 | 
            +
                "h.8.mlp.up_proj.weight": "pytorch_model_00010-of-00032.bin",
         | 
| 291 | 
            +
                "h.8.post_attention_layernorm.weight": "pytorch_model_00010-of-00032.bin",
         | 
| 292 | 
            +
                "h.8.self_attention.dense.bias": "pytorch_model_00010-of-00032.bin",
         | 
| 293 | 
            +
                "h.8.self_attention.dense.weight": "pytorch_model_00010-of-00032.bin",
         | 
| 294 | 
            +
                "h.8.self_attention.key_value.weight": "pytorch_model_00010-of-00032.bin",
         | 
| 295 | 
            +
                "h.8.self_attention.query.weight": "pytorch_model_00010-of-00032.bin",
         | 
| 296 | 
            +
                "h.9.input_layernorm.weight": "pytorch_model_00011-of-00032.bin",
         | 
| 297 | 
            +
                "h.9.mlp.down_proj.bias": "pytorch_model_00011-of-00032.bin",
         | 
| 298 | 
            +
                "h.9.mlp.down_proj.weight": "pytorch_model_00011-of-00032.bin",
         | 
| 299 | 
            +
                "h.9.mlp.gate_proj.weight": "pytorch_model_00011-of-00032.bin",
         | 
| 300 | 
            +
                "h.9.mlp.up_proj.weight": "pytorch_model_00011-of-00032.bin",
         | 
| 301 | 
            +
                "h.9.post_attention_layernorm.weight": "pytorch_model_00011-of-00032.bin",
         | 
| 302 | 
            +
                "h.9.self_attention.dense.bias": "pytorch_model_00011-of-00032.bin",
         | 
| 303 | 
            +
                "h.9.self_attention.dense.weight": "pytorch_model_00011-of-00032.bin",
         | 
| 304 | 
            +
                "h.9.self_attention.key_value.weight": "pytorch_model_00011-of-00032.bin",
         | 
| 305 | 
            +
                "h.9.self_attention.query.weight": "pytorch_model_00011-of-00032.bin",
         | 
| 306 | 
            +
                "ln_f.weight": "pytorch_model_00032-of-00032.bin",
         | 
| 307 | 
            +
                "word_embeddings.weight": "pytorch_model_00001-of-00032.bin"
         | 
| 308 | 
            +
              }
         | 
| 309 | 
            +
            }
         | 
    	
        pytorch_model_00001-of-00032.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:d38be9f528752927fdead07d970efb2dfc8af2730109f0f530adbfcab1c154fe
         | 
| 3 | 
            +
            size 1312818090
         | 
    	
        pytorch_model_00002-of-00032.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:975561368e6140c521f752cce6af2a026e4e3d42232931f0f5349454344f1ca6
         | 
| 3 | 
            +
            size 436244035
         | 
    	
        pytorch_model_00003-of-00032.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:d644c6aaabfdd59aa14d7b91265f1fce58f7b58d8b9aa2c543b892078b158a1e
         | 
| 3 | 
            +
            size 436244035
         | 
    	
        pytorch_model_00004-of-00032.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:736bdfb7786f4f833672df7648c1ed16b9d22f021cc208c0969f5c8d3418c44b
         | 
| 3 | 
            +
            size 436244035
         | 
    	
        pytorch_model_00005-of-00032.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:ee7729e4935dad973b801624259f9d7bc0b8ae8498434b7c94afe85a14f02c87
         | 
| 3 | 
            +
            size 436244035
         | 
