File size: 1,808 Bytes
dffa2e7
6d64ed9
dffa2e7
6d64ed9
 
 
e95487a
 
 
 
 
6d64ed9
 
 
 
154e99b
f4b711c
 
e95487a
dffa2e7
6d64ed9
81625a3
6d64ed9
 
 
 
 
 
02878fc
6d64ed9
 
5361aa7
 
02878fc
 
 
f7c489c
02878fc
6d64ed9
 
 
 
5361aa7
5675de1
 
c4cd9ff
6d64ed9
5675de1
6d64ed9
5361aa7
f4b711c
5675de1
f4b711c
 
5361aa7
 
 
 
 
 
 
 
 
f4b711c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
library_name: PyLaia
license: mit
tags:
- PyLaia
- PyTorch
- atr
- htr
- ocr
- historical
- printed
metrics:
- CER
- WER
language:
- de
datasets:
- Teklia/NewsEyeAustrian
pipeline_tag: image-to-text
---

# PyLaia - NewsEye Austrian

This model performs Handwritten Text Recognition in Austrian German. 

## Model description

The model has been trained using the PyLaia library on the [NewsEye / READ OCR training dataset from Austrian Newspapers (19th C.)](https://zenodo.org/record/3387369) dataset.

Training images were resized with a fixed height of 128 pixels, keeping the original aspect ratio.

| set | lines |
| :---- | ------: |
| train |  52,834 |
| val   |   4,667 |

An external 6-gram character language model can be used to improve recognition. The language model is trained on the text from the NewsEye training set.

## Evaluation results

The model achieves the following results:

| set   | Language model | CER (%)    | WER (%) | lines   |
|:------|:---------------| ----------:| -------:|----------:|
| val   | no             |  1.82      |   7.77  |     4,667 |
| val   | yes            |  1.77      |   7.01  |     4,667 |

## How to use?

Please refer to the [PyLaia documentation](https://atr.pages.teklia.com/pylaia/usage/prediction/) to use this model.

## Cite us!

```bibtex
@inproceedings{pylaia2024,
    author = {Tarride, Solène and Schneider, Yoann and Generali-Lince, Marie and Boillet, Mélodie and Abadie, Bastien and Kermorvant, Christopher},
    title = {{Improving Automatic Text Recognition with Language Models in the PyLaia Open-Source Library}},
    booktitle = {Document Analysis and Recognition - ICDAR 2024},
    year = {2024},
    publisher = {Springer Nature Switzerland},
    address = {Cham},
    pages = {387--404},
    isbn = {978-3-031-70549-6}
}
```