File size: 7,986 Bytes
b25e7e6
 
 
 
 
 
 
1a21cd2
 
cd2cf34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b25e7e6
 
 
 
 
 
 
 
1a21cd2
 
 
 
7a758e9
 
1a21cd2
 
 
 
 
 
 
 
 
7a758e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b25e7e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd2cf34
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
---
license: apache-2.0
tags:
- moe
- merge
- AdaptLLM/medicine-chat
- microsoft/Orca-2-7b
datasets:
- open-llm-leaderboard/details_Technoculture__Medchator-2x7b
model-index:
- name: Medchator-2x7b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 57.59
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Technoculture/Medchator-2x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 78.14
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Technoculture/Medchator-2x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 56.13
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Technoculture/Medchator-2x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 48.77
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Technoculture/Medchator-2x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 75.3
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Technoculture/Medchator-2x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 32.83
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Technoculture/Medchator-2x7b
      name: Open LLM Leaderboard
---

# Medchator-2x7b

Medchator-2x7b is a Mixure of Experts (MoE) made with the following models:
* [AdaptLLM/medicine-chat](https://huggingface.co/AdaptLLM/medicine-chat)
* [microsoft/Orca-2-7b](https://huggingface.co/microsoft/Orca-2-7b)

## Evaluations

# Open LLM Leaderboard

![image/png](https://cdn-uploads.huggingface.co/production/uploads/63486df1f8f01fcc4b23e97d/ZSMRhGuLrE-K1WNlfbDAG.png)

| Model Name         | ARC      | HellaSwag | MMLU     | TruthfulQA | Winogrande | GSM8K    |
| ------------------ | -------- | --------- | -------- | ---------- | ---------- | -------- |
| Orca-2-7b          | **78.4** | 76.1      | 53.7     | **52.4**   | 74.2       | **47.2** |
| LLAMA-2-7b         | 43.2     | 77.1      | 44.4     | 38.7       | 69.5       | 16       |
| MT7Bi-sft          | 54.1     | 75.11     | -        | 43.08      | 72.14      | 15.54    |
| MT7bi-dpo	         | 54.69    | 75.89     | 52.82    | 45.48      | 71.58      | 25.93    |
| Medorca-2x7b       | 54.1     | 76.04     | 54.1     | 48.04      | 74.51      | 20.64    |
| Medchator-2x7b     | **57.59**| **78.14** | **56.13**| **48.77**  | **75.3**   | **32.83**|

## Medical Performance

Clinical Camel demonstrates competitive performance on medical benchmarks.

**Table: Five-Shot Performance of GPT3.5, llama-2-7b and Llama-2-70b on Various Medical Datasets**

| Dataset                    | Medchator-2x7b | GPT3.5 | Llama-2 7b | Llama-2 70b |
|----------------------------|----------------|--------|------------|-------------|
| MMLU Anatomy               | 56.3           | 60.7   | 48.9       | 62.9        |
| MMLU Clinical Knowledge    | 63.0           | 68.7   | 46.0       | 71.7        |
| MMLU College Biology       | 63.8           | 72.9   | 47.2       | 84.7        |
| MMLU College Medicine      | 50.9           | 63.6   | 42.8       | 64.2        |
| MMLU Medical Genetics      | 67.0           | 68.0   | 55.0       | 74.0        |
| MMLU Professional Medicine | 55.1           | 69.8   | 53.6       | 75.0        |

## 🧩 Configuration

```yaml
base_model: microsoft/Orca-2-7b
gate_mode: hidden
dtype: bfloat16
experts:
  - source_model: AdaptLLM/medicine-chat
    positive_prompts: 
      - "How does sleep affect cardiovascular health?"
      - "Could a plant-based diet improve arthritis symptoms?"
      - "A patient comes in with symptoms of dizziness and nausea"
      - "When discussing diabetes management, the key factors to consider are"
      - "The differential diagnosis for a headache with visual aura could include"
    negative_prompts:
      - "Recommend a good recipe for a vegetarian lasagna."
      - "Give an overview of the French Revolution."
      - "Explain how a digital camera captures an image."
      - "What are the environmental impacts of deforestation?"
      - "The recent advancements in artificial intelligence have led to developments in"
      - "The fundamental concepts in economics include ideas like supply and demand, which explain"
  - source_model: microsoft/Orca-2-7b
    positive_prompts:
      - "Here is a funny joke for you -"
      - "When considering the ethical implications of artificial intelligence, one must take into account"
      - "In strategic planning, a company must analyze its strengths and weaknesses, which involves"
      - "Understanding consumer behavior in marketing requires considering factors like"
      - "The debate on climate change solutions hinges on arguments that"
    negative_prompts:
      - "In discussing dietary adjustments for managing hypertension, it's crucial to emphasize"
      - "For early detection of melanoma, dermatologists recommend that patients regularly check their skin for"
      - "Explaining the importance of vaccination, a healthcare professional should highlight"
```

## 💻 Usage

```python
!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Technoculture/Medchator-2x7b"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Technoculture__Medchator-2x7b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |58.13|
|AI2 Reasoning Challenge (25-Shot)|57.59|
|HellaSwag (10-Shot)              |78.14|
|MMLU (5-Shot)                    |56.13|
|TruthfulQA (0-shot)              |48.77|
|Winogrande (5-shot)              |75.30|
|GSM8k (5-shot)                   |32.83|