File size: 4,001 Bytes
0b09547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
---
license: apache-2.0
base_model: NousResearch/Hermes-2-Pro-Mistral-7B
tags:
- generated_from_trainer
model-index:
- name: workspace/disk2/alexandria/models/g2t_hermes/
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: NousResearch/Hermes-2-Pro-Mistral-7B
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: /workspace/disk2/alexandria/data/graphs_2_text_hermes.jsonl
    type: sharegpt
    conversation: chatml
dataset_prepared_path:
val_set_size: 0.0
output_dir: /workspace/disk2/alexandria/models/g2t_hermes/

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project: alexandria
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 0
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero2.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

```

</details><br>

# workspace/disk2/alexandria/models/g2t_hermes/

This model is a fine-tuned version of [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B) on a version of the [Project Alexandria dataset](https://huggingface.co/datasets/ChristophSchuhmann/alexandria-test), designed to turn input knowledge graphs structured as Python dictionaries to reconstructed plaintext.

## Model description

This is a *prototype* model; trained quickly as a proof of concept. No hyperparameter tuning or extensive data cleaning has been done besides filtering entries that meet the following criteria:
- Contains a refusal of some sort
- Has an empty input and/or output
- Queries that resulted in an error output

## Intended uses & limitations

The model follows a form of ChatML with no system prompt. The model should be prompted as follows:
```
<|im_start|>user
[Input your knowledge graph structured as a Python dictionary here.]<|im_end|>
<|im_start|>assistant
(Make sure to put a newline after "assistant". Do not include this text in parenthesis in your prompt.)
```

Greedy sampling is recommended for generating outputs.

No extensive data cleaning has been done. The model may not output a satisfactorily detailed or parsable knowledge graph at times. Since this model is only 7B parameters, certain relationships in the input text may not be properly picked up on by the model. As stated before, this model is a prototype.

## Training and evaluation data

The data was generated via. several large language models.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1

### Training results



### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0