--- tags: - gpt-neo - text-generation - transformers license: mit --- # TeamAiko-GPT-Neo-1.3B This is the `TeamAiko-GPT-Neo-1.3B` model, a customized version of the `EleutherAI/gpt-neo-1.3B` model. This model has been branded and configured for use by Team Aiko. **Note: This is the base version of the model and has not been trained on any specific datasets.** ## Model Details - **Model Name**: TeamAiko-GPT-Neo-1.3B - **Base Model**: EleutherAI/gpt-neo-1.3B - **Architecture**: GPT-Neo - **Parameters**: 1.3 billion - **Tokenizer**: AutoTokenizer - **Framework**: PyTorch ## Usage To use this model, you can load it with the `transformers` library: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Path to the model folder model_path = "Team-Aiko/TeamAiko-GPT-Neo-1.3B" # Set device to CPU to limit RAM usage device = torch.device("cpu") torch.set_num_threads(4) # Limit the number of threads used by PyTorch # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path) model.to(device) # Move model to CPU # Test the model with a sample input input_text = "Once upon a time in a land far, far away" inputs = tokenizer(input_text, return_tensors="pt").to(device) outputs = model.generate(inputs["input_ids"], max_length=50, num_return_sequences=1, no_repeat_ngram_size=2, early_stopping=True) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print("Generated text:", generated_text)