File size: 2,343 Bytes
273d61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
base_model: TannerGladson/chess-roberta
tags:
- generated_from_trainer
datasets:
- TannerGladson/chess-roberta-whole-move-tuning
metrics:
- accuracy
model-index:
- name: 2024.07.20-19.49
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: TannerGladson/chess-roberta-whole-move-tuning
type: TannerGladson/chess-roberta-whole-move-tuning
metrics:
- name: Accuracy
type: accuracy
value: 0.902359997194343
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/tanner-gladson/huggingface/runs/j4uydn09)
# 2024.07.20-19.49
This model is a fine-tuned version of [TannerGladson/chess-roberta](https://huggingface.co/TannerGladson/chess-roberta) on the TannerGladson/chess-roberta-whole-move-tuning dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2611
- Accuracy: 0.9024
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.5262 | 0.2485 | 1000 | 0.4272 | 0.8519 |
| 0.413 | 0.4970 | 2000 | 0.3650 | 0.8711 |
| 0.3505 | 0.7455 | 3000 | 0.3138 | 0.8852 |
| 0.3111 | 0.9939 | 4000 | 0.2829 | 0.8950 |
| 0.2817 | 1.2424 | 5000 | 0.2596 | 0.9025 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.0.1+cu117
- Datasets 2.17.1
- Tokenizers 0.19.1
|