TahmidTapadar commited on
Commit
e011d5e
·
verified ·
1 Parent(s): 6d2af03

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,431 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:2080
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: BAAI/bge-base-en
10
+ widget:
11
+ - source_sentence: '
12
+
13
+ Name : Terra Cabs
14
+
15
+ Category: Transportation Services
16
+
17
+ Department: Logistics
18
+
19
+ Location: Lisbon, Portugal
20
+
21
+ Amount: 256.75
22
+
23
+ Card: Business Travel
24
+
25
+ Trip Name: Conference in Europe
26
+
27
+ '
28
+ sentences:
29
+ - Software & Licenses
30
+ - 'Travel: Ground Transport'
31
+ - Subscriptions & Memberships
32
+ - source_sentence: '
33
+
34
+ Name : Global Symposium Co.
35
+
36
+ Category: Conference Services, Event Planning
37
+
38
+ Department: Marketing
39
+
40
+ Location: Zurich, Switzerland
41
+
42
+ Amount: 987.45
43
+
44
+ Card: Professional Development
45
+
46
+ Trip Name: unknown
47
+
48
+ '
49
+ sentences:
50
+ - Office Supplies & Stationery
51
+ - Conference & Event Fees
52
+ - Hardware & Equipment
53
+ - source_sentence: '
54
+
55
+ Name : Global Business Institute
56
+
57
+ Category: Educational Services
58
+
59
+ Department: Human Resources
60
+
61
+ Location: Berlin, Germany
62
+
63
+ Amount: 967.25
64
+
65
+ Card: Employee Growth Initiative
66
+
67
+ Trip Name: unknown
68
+
69
+ '
70
+ sentences:
71
+ - Employee Training & Development
72
+ - 'Travel: Meals & Entertainment'
73
+ - Regulatory & Compliance Fees
74
+ - source_sentence: '
75
+
76
+ Name : SilvaTech Solutions
77
+
78
+ Category: Professional Services, Technology Services
79
+
80
+ Department: IT Development
81
+
82
+ Location: São Paulo, Brazil
83
+
84
+ Amount: 3950.45
85
+
86
+ Card: Enterprise Resources
87
+
88
+ Trip Name: unknown
89
+
90
+ '
91
+ sentences:
92
+ - Cloud Infrastructure & Hosting
93
+ - Software & Licenses
94
+ - Internet & Network Services
95
+ - source_sentence: '
96
+
97
+ Name : TechWave Solutions
98
+
99
+ Category: Consulting, Technical Services
100
+
101
+ Department: IT
102
+
103
+ Location: Berlin, Germany
104
+
105
+ Amount: 3425.67
106
+
107
+ Card: Innovation Fund
108
+
109
+ Trip Name: unknown
110
+
111
+ '
112
+ sentences:
113
+ - IT Support & Maintenance
114
+ - Internet & Network Services
115
+ - Internet & Network Services
116
+ pipeline_tag: sentence-similarity
117
+ library_name: sentence-transformers
118
+ ---
119
+
120
+ # SentenceTransformer based on BAAI/bge-base-en
121
+
122
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
123
+
124
+ ## Model Details
125
+
126
+ ### Model Description
127
+ - **Model Type:** Sentence Transformer
128
+ - **Base model:** [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) <!-- at revision b737bf5dcc6ee8bdc530531266b4804a5d77b5d8 -->
129
+ - **Maximum Sequence Length:** 512 tokens
130
+ - **Output Dimensionality:** 768 tokens
131
+ - **Similarity Function:** Cosine Similarity
132
+ <!-- - **Training Dataset:** Unknown -->
133
+ <!-- - **Language:** Unknown -->
134
+ <!-- - **License:** Unknown -->
135
+
136
+ ### Model Sources
137
+
138
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
139
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
140
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
141
+
142
+ ### Full Model Architecture
143
+
144
+ ```
145
+ SentenceTransformer(
146
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
147
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
148
+ (2): Normalize()
149
+ )
150
+ ```
151
+
152
+ ## Usage
153
+
154
+ ### Direct Usage (Sentence Transformers)
155
+
156
+ First install the Sentence Transformers library:
157
+
158
+ ```bash
159
+ pip install -U sentence-transformers
160
+ ```
161
+
162
+ Then you can load this model and run inference.
163
+ ```python
164
+ from sentence_transformers import SentenceTransformer
165
+
166
+ # Download from the 🤗 Hub
167
+ model = SentenceTransformer("TahmidTapadar/finetuned-bge-base-en")
168
+ # Run inference
169
+ sentences = [
170
+ '\nName : TechWave Solutions\nCategory: Consulting, Technical Services\nDepartment: IT\nLocation: Berlin, Germany\nAmount: 3425.67\nCard: Innovation Fund\nTrip Name: unknown\n',
171
+ 'IT Support & Maintenance',
172
+ 'Internet & Network Services',
173
+ ]
174
+ embeddings = model.encode(sentences)
175
+ print(embeddings.shape)
176
+ # [3, 768]
177
+
178
+ # Get the similarity scores for the embeddings
179
+ similarities = model.similarity(embeddings, embeddings)
180
+ print(similarities.shape)
181
+ # [3, 3]
182
+ ```
183
+
184
+ <!--
185
+ ### Direct Usage (Transformers)
186
+
187
+ <details><summary>Click to see the direct usage in Transformers</summary>
188
+
189
+ </details>
190
+ -->
191
+
192
+ <!--
193
+ ### Downstream Usage (Sentence Transformers)
194
+
195
+ You can finetune this model on your own dataset.
196
+
197
+ <details><summary>Click to expand</summary>
198
+
199
+ </details>
200
+ -->
201
+
202
+ <!--
203
+ ### Out-of-Scope Use
204
+
205
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
206
+ -->
207
+
208
+ <!--
209
+ ## Bias, Risks and Limitations
210
+
211
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
212
+ -->
213
+
214
+ <!--
215
+ ### Recommendations
216
+
217
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
218
+ -->
219
+
220
+ ## Training Details
221
+
222
+ ### Training Dataset
223
+
224
+ #### Unnamed Dataset
225
+
226
+
227
+ * Size: 2,080 training samples
228
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
229
+ * Approximate statistics based on the first 1000 samples:
230
+ | | sentence_0 | sentence_1 | sentence_2 |
231
+ |:--------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
232
+ | type | string | string | string |
233
+ | details | <ul><li>min: 31 tokens</li><li>mean: 37.52 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.71 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.72 tokens</li><li>max: 7 tokens</li></ul> |
234
+ * Samples:
235
+ | sentence_0 | sentence_1 | sentence_2 |
236
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------|:---------------------------------------------------|
237
+ | <code><br>Name : Global Insights Hub<br>Category: Consulting Services, Research & Development<br>Department: Data Solutions<br>Location: Berlin, Germany<br>Amount: 879.49<br>Card: Analytics Platform Subscription<br>Trip Name: unknown<br></code> | <code>Data Services & Analytics</code> | <code>Office Supplies & Stationery</code> |
238
+ | <code><br>Name : Explore Membership Co.<br>Category: travel, leisure<br>Department: Travel Services<br>Location: Amsterdam, Netherlands<br>Amount: 89.99<br>Card: Global Traveler Program<br>Trip Name: unknown<br></code> | <code>Subscriptions & Memberships</code> | <code>Subscription & Revenue Infrastructure</code> |
239
+ | <code><br>Name : TransMobilia<br>Category: Transport Services, Rental Services<br>Department: Travel<br>Location: Berlin, Germany<br>Amount: 86.47<br>Card: Corporate Travel<br>Trip Name: unknown<br></code> | <code>Travel: Ground Transport</code> | <code>Insurance</code> |
240
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
241
+ ```json
242
+ {
243
+ "scale": 20.0,
244
+ "similarity_fct": "cos_sim"
245
+ }
246
+ ```
247
+
248
+ ### Training Hyperparameters
249
+ #### Non-Default Hyperparameters
250
+
251
+ - `multi_dataset_batch_sampler`: round_robin
252
+
253
+ #### All Hyperparameters
254
+ <details><summary>Click to expand</summary>
255
+
256
+ - `overwrite_output_dir`: False
257
+ - `do_predict`: False
258
+ - `eval_strategy`: no
259
+ - `prediction_loss_only`: True
260
+ - `per_device_train_batch_size`: 8
261
+ - `per_device_eval_batch_size`: 8
262
+ - `per_gpu_train_batch_size`: None
263
+ - `per_gpu_eval_batch_size`: None
264
+ - `gradient_accumulation_steps`: 1
265
+ - `eval_accumulation_steps`: None
266
+ - `torch_empty_cache_steps`: None
267
+ - `learning_rate`: 5e-05
268
+ - `weight_decay`: 0.0
269
+ - `adam_beta1`: 0.9
270
+ - `adam_beta2`: 0.999
271
+ - `adam_epsilon`: 1e-08
272
+ - `max_grad_norm`: 1
273
+ - `num_train_epochs`: 3
274
+ - `max_steps`: -1
275
+ - `lr_scheduler_type`: linear
276
+ - `lr_scheduler_kwargs`: {}
277
+ - `warmup_ratio`: 0.0
278
+ - `warmup_steps`: 0
279
+ - `log_level`: passive
280
+ - `log_level_replica`: warning
281
+ - `log_on_each_node`: True
282
+ - `logging_nan_inf_filter`: True
283
+ - `save_safetensors`: True
284
+ - `save_on_each_node`: False
285
+ - `save_only_model`: False
286
+ - `restore_callback_states_from_checkpoint`: False
287
+ - `no_cuda`: False
288
+ - `use_cpu`: False
289
+ - `use_mps_device`: False
290
+ - `seed`: 42
291
+ - `data_seed`: None
292
+ - `jit_mode_eval`: False
293
+ - `use_ipex`: False
294
+ - `bf16`: False
295
+ - `fp16`: False
296
+ - `fp16_opt_level`: O1
297
+ - `half_precision_backend`: auto
298
+ - `bf16_full_eval`: False
299
+ - `fp16_full_eval`: False
300
+ - `tf32`: None
301
+ - `local_rank`: 0
302
+ - `ddp_backend`: None
303
+ - `tpu_num_cores`: None
304
+ - `tpu_metrics_debug`: False
305
+ - `debug`: []
306
+ - `dataloader_drop_last`: False
307
+ - `dataloader_num_workers`: 0
308
+ - `dataloader_prefetch_factor`: None
309
+ - `past_index`: -1
310
+ - `disable_tqdm`: False
311
+ - `remove_unused_columns`: True
312
+ - `label_names`: None
313
+ - `load_best_model_at_end`: False
314
+ - `ignore_data_skip`: False
315
+ - `fsdp`: []
316
+ - `fsdp_min_num_params`: 0
317
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
318
+ - `fsdp_transformer_layer_cls_to_wrap`: None
319
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
320
+ - `deepspeed`: None
321
+ - `label_smoothing_factor`: 0.0
322
+ - `optim`: adamw_torch
323
+ - `optim_args`: None
324
+ - `adafactor`: False
325
+ - `group_by_length`: False
326
+ - `length_column_name`: length
327
+ - `ddp_find_unused_parameters`: None
328
+ - `ddp_bucket_cap_mb`: None
329
+ - `ddp_broadcast_buffers`: False
330
+ - `dataloader_pin_memory`: True
331
+ - `dataloader_persistent_workers`: False
332
+ - `skip_memory_metrics`: True
333
+ - `use_legacy_prediction_loop`: False
334
+ - `push_to_hub`: False
335
+ - `resume_from_checkpoint`: None
336
+ - `hub_model_id`: None
337
+ - `hub_strategy`: every_save
338
+ - `hub_private_repo`: False
339
+ - `hub_always_push`: False
340
+ - `gradient_checkpointing`: False
341
+ - `gradient_checkpointing_kwargs`: None
342
+ - `include_inputs_for_metrics`: False
343
+ - `eval_do_concat_batches`: True
344
+ - `fp16_backend`: auto
345
+ - `push_to_hub_model_id`: None
346
+ - `push_to_hub_organization`: None
347
+ - `mp_parameters`:
348
+ - `auto_find_batch_size`: False
349
+ - `full_determinism`: False
350
+ - `torchdynamo`: None
351
+ - `ray_scope`: last
352
+ - `ddp_timeout`: 1800
353
+ - `torch_compile`: False
354
+ - `torch_compile_backend`: None
355
+ - `torch_compile_mode`: None
356
+ - `dispatch_batches`: None
357
+ - `split_batches`: None
358
+ - `include_tokens_per_second`: False
359
+ - `include_num_input_tokens_seen`: False
360
+ - `neftune_noise_alpha`: None
361
+ - `optim_target_modules`: None
362
+ - `batch_eval_metrics`: False
363
+ - `eval_on_start`: False
364
+ - `use_liger_kernel`: False
365
+ - `eval_use_gather_object`: False
366
+ - `batch_sampler`: batch_sampler
367
+ - `multi_dataset_batch_sampler`: round_robin
368
+
369
+ </details>
370
+
371
+ ### Training Logs
372
+ | Epoch | Step | Training Loss |
373
+ |:------:|:----:|:-------------:|
374
+ | 1.9231 | 500 | 0.6494 |
375
+
376
+
377
+ ### Framework Versions
378
+ - Python: 3.11.11
379
+ - Sentence Transformers: 3.1.1
380
+ - Transformers: 4.45.2
381
+ - PyTorch: 2.5.1+cu124
382
+ - Accelerate: 1.3.0
383
+ - Datasets: 3.3.1
384
+ - Tokenizers: 0.20.3
385
+
386
+ ## Citation
387
+
388
+ ### BibTeX
389
+
390
+ #### Sentence Transformers
391
+ ```bibtex
392
+ @inproceedings{reimers-2019-sentence-bert,
393
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
394
+ author = "Reimers, Nils and Gurevych, Iryna",
395
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
396
+ month = "11",
397
+ year = "2019",
398
+ publisher = "Association for Computational Linguistics",
399
+ url = "https://arxiv.org/abs/1908.10084",
400
+ }
401
+ ```
402
+
403
+ #### MultipleNegativesRankingLoss
404
+ ```bibtex
405
+ @misc{henderson2017efficient,
406
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
407
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
408
+ year={2017},
409
+ eprint={1705.00652},
410
+ archivePrefix={arXiv},
411
+ primaryClass={cs.CL}
412
+ }
413
+ ```
414
+
415
+ <!--
416
+ ## Glossary
417
+
418
+ *Clearly define terms in order to be accessible across audiences.*
419
+ -->
420
+
421
+ <!--
422
+ ## Model Card Authors
423
+
424
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
425
+ -->
426
+
427
+ <!--
428
+ ## Model Card Contact
429
+
430
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
431
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./bge-finetuned",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.45.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a04cadf8b0167767ed482cb76425320de90f555c8cfeacb8d927b2f5df9eda84
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff