--- library_name: transformers tags: - reward - RM - Code - AceCode - AceCoder license: mit datasets: - TIGER-Lab/AceCode-87K - TIGER-Lab/AceCodePair-300K language: - en base_model: - Qwen/Qwen2.5-Coder-7B-Instruct --- # 🂡 AceCoder [Paper](https://arxiv.org/abs/2502.01718) | [Github](https://github.com/TIGER-AI-Lab/AceCoder) | [AceCode-87K](https://huggingface.co/datasets/TIGER-Lab/AceCode-87K) | [AceCodePair-300K](https://huggingface.co/datasets/TIGER-Lab/AceCodePair-300K) | [RM/RL Models](https://huggingface.co/collections/TIGER-Lab/acecoder-67a16011a6c7d65cad529eba) We introduce AceCoder, the first work to propose a fully automated pipeline for synthesizing large-scale reliable tests used for the reward model training and reinforcement learning in the coding scenario. To do this, we curated the dataset AceCode-87K, where we start from a seed code dataset and prompt powerful LLMs to "imagine" proper test cases for the coding question and filter the noisy ones. We sample inferences from existing coder models and compute their pass rate as the reliable and verifiable rewards for both training the reward model and conducting the reinforcement learning for coder LLM. **This model is the official AceCodeRM-7B trained from Qwen2.5-Coder-7B-Instruct on [TIGER-Lab/AceCodePair-300K](https://huggingface.co/datasets/TIGER-Lab/AceCodePair-300K)** ![https://tiger-ai-lab.github.io/AceCoder/static/images/ac_overview.png](https://tiger-ai-lab.github.io/AceCoder/static/images/ac_overview.png) ## Performance on Best-of-N sampling ![https://tiger-ai-lab.github.io/AceCoder/static/images/ac_table2.png](https://tiger-ai-lab.github.io/AceCoder/static/images/ac_table2.png) ## Usage - To use the RM to produce rewards, please apply the following example codes: ```python """pip install git+https://github.com/TIGER-AI-Lab/AceCoder""" from acecoder import Qwen2ForCausalRM from transformers import AutoTokenizer model_path = "TIGER-Lab/AceCodeRM-7B" model = Qwen2ForCausalRM.from_pretrained(model_path, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) question = """\ Given an array of numbers, write a function runningSum that returns an array where each element at index i is the sum of all elements from index 0 to i (inclusive). For example: Input: nums = [1,2,3,4] Output: [1,3,6,10] """ program_with_3_errors = """\ def runningSum(nums): result = [] current_sum = 0 for i in range(1, len(nums)): result.append(nums[i]) current_sum += nums[i] return result """ program_with_2_errors = """\ def runningSum(nums): result = [] current_sum = 0 for i in range(0, len(nums)): result.append(nums[i]) current_sum += nums[i] return result """ program_with_1_errors = """\ def runningSum(nums): result = [] current_sum = 0 for i in range(0, len(nums)): result.append(current_sum) current_sum += nums[i] return result """ program_correct = """\ def runningSum(nums): result = [] current_sum = 0 for num in nums: current_sum += num result.append(current_sum) return result """ program_chats = [ [ { "content": question, "role": "user", }, { "role": "assistant", "content": program } ] for program in [program_with_3_errors, program_with_2_errors, program_with_1_errors, program_correct] ] input_tokens = tokenizer.apply_chat_template( program_chats, tokenize=True, return_dict=True, padding=True, return_tensors="pt", ).to(model.device) _, _, values = model( **input_tokens, output_hidden_states=True, return_dict=True, use_cache=False, ) masks = input_tokens["attention_mask"] rm_scores = values.gather( dim=-1, index=(masks.sum(dim=-1, keepdim=True) - 1) ) # find the last token (eos) in each sequence, a rm_scores = rm_scores.squeeze() print("RM Scores:", rm_scores) print("Score of program with 3 errors:", rm_scores[0].item()) print("Score of program with 2 errors:", rm_scores[1].item()) print("Score of program with 1 errors:", rm_scores[2].item()) print("Score of correct program:", rm_scores[3].item()) """ RM Scores: tensor([-20.5058, -1.7867, 0.4395, 23.0689], device='cuda:0', grad_fn=) Score of program with 3 errors: -20.505754470825195 Score of program with 2 errors: -1.7866804599761963 Score of program with 1 errors: 0.43949759006500244 Score of correct program: 23.068859100341797 """ ``` - To use the RM for the RL tuning, please refer to our [Github Code](https://github.com/TIGER-AI-Lab/AceCoder) for more details ## Citation ```bibtex @article{AceCoder, title={AceCoder: Acing Coder RL via Automated Test-Case Synthesis}, author={Zeng, Huaye and Jiang, Dongfu and Wang, Haozhe and Nie, Ping and Chen, Xiaotong and Chen, Wenhu}, journal={ArXiv}, year={2025}, volume={abs/2207.01780} } ```