Tamás Ficsor
commited on
Commit
·
11cdb73
1
Parent(s):
d64ea7b
add model
Browse files- config.json +36 -0
- config.py +68 -0
- gbst.py +405 -0
- modeling_charmen.py +410 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"CharmenElectraModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "config.CharmenElectraConfig",
|
8 |
+
"AutoModel": "modeling_charmen.CharmenElectraModel"
|
9 |
+
},
|
10 |
+
"classifier_dropout": null,
|
11 |
+
"downsampling_factor": 4,
|
12 |
+
"embedding_size": 768,
|
13 |
+
"hidden_act": "gelu",
|
14 |
+
"hidden_dropout_prob": 0.1,
|
15 |
+
"hidden_size": 512,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 2048,
|
18 |
+
"layer_norm_eps": 1e-12,
|
19 |
+
"max_block_size": 4,
|
20 |
+
"max_position_embeddings": 1024,
|
21 |
+
"model_type": "SzegedAI/charmen-electra",
|
22 |
+
"num_attention_heads": 8,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"position_embedding_type": "absolute",
|
25 |
+
"sampling": "fp32_gumbel",
|
26 |
+
"score_consensus_attn": true,
|
27 |
+
"summary_activation": "gelu",
|
28 |
+
"summary_last_dropout": 0.1,
|
29 |
+
"summary_type": "first",
|
30 |
+
"summary_use_proj": true,
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.21.0",
|
33 |
+
"type_vocab_size": 2,
|
34 |
+
"upsample_output": true,
|
35 |
+
"vocab_size": 261
|
36 |
+
}
|
config.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from typing import List, Literal, Optional
|
3 |
+
|
4 |
+
|
5 |
+
_SAMPLING_TYPE = Literal['fp32_gumbel', 'fp16_gumbel', 'multinomial']
|
6 |
+
|
7 |
+
|
8 |
+
class CharmenElectraConfig(PretrainedConfig):
|
9 |
+
model_type = "SzegedAI/charmen-electra"
|
10 |
+
_name_or_path = "SzegedAI/charmen-electra"
|
11 |
+
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
downsampling_factor: int = 4,
|
15 |
+
max_block_size: int = 4,
|
16 |
+
score_consensus_attn: bool = True,
|
17 |
+
upsample_output: bool = True,
|
18 |
+
sampling: _SAMPLING_TYPE = 'fp32_gumbel',
|
19 |
+
attention_probs_dropout_prob: float = 0.1,
|
20 |
+
embedding_size: int = 768,
|
21 |
+
hidden_act: str = "gelu",
|
22 |
+
hidden_dropout_prob: float = 0.1,
|
23 |
+
hidden_size: int = 512,
|
24 |
+
initializer_range: float = 0.02,
|
25 |
+
intermediate_size: int = 2048,
|
26 |
+
layer_norm_eps: float = 1e-12,
|
27 |
+
max_position_embeddings: int = 1024,
|
28 |
+
model_type: str = "electra",
|
29 |
+
num_attention_heads: int = 8,
|
30 |
+
num_hidden_layers: int = 12,
|
31 |
+
pad_token_id: int = 0,
|
32 |
+
position_embedding_type: str = "absolute",
|
33 |
+
summary_activation: str = "gelu",
|
34 |
+
summary_last_dropout: float = 0.1,
|
35 |
+
summary_type: str = "first",
|
36 |
+
summary_use_proj: bool = True,
|
37 |
+
type_vocab_size: int = 2,
|
38 |
+
vocab_size: int = 261,
|
39 |
+
classifier_dropout: Optional[float] = None,
|
40 |
+
**kwargs,
|
41 |
+
):
|
42 |
+
self.downsampling_factor = downsampling_factor
|
43 |
+
self.max_block_size = max_block_size
|
44 |
+
self.score_consensus_attn = score_consensus_attn
|
45 |
+
self.upsample_output = upsample_output
|
46 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
47 |
+
self.embedding_size = embedding_size
|
48 |
+
self.hidden_act = hidden_act
|
49 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
50 |
+
self.hidden_size = hidden_size
|
51 |
+
self.initializer_range = initializer_range
|
52 |
+
self.intermediate_size = intermediate_size
|
53 |
+
self.layer_norm_eps = layer_norm_eps
|
54 |
+
self.max_position_embeddings = max_position_embeddings
|
55 |
+
self.model_type = model_type
|
56 |
+
self.num_attention_heads = num_attention_heads
|
57 |
+
self.num_hidden_layers = num_hidden_layers
|
58 |
+
self.pad_token_id = pad_token_id
|
59 |
+
self.position_embedding_type = position_embedding_type
|
60 |
+
self.summary_activation = summary_activation
|
61 |
+
self.summary_last_dropout = summary_last_dropout
|
62 |
+
self.summary_type = summary_type
|
63 |
+
self.summary_use_proj = summary_use_proj
|
64 |
+
self.type_vocab_size = type_vocab_size
|
65 |
+
self.vocab_size = vocab_size
|
66 |
+
self.sampling = sampling
|
67 |
+
self.classifier_dropout = classifier_dropout
|
68 |
+
super().__init__(**kwargs)
|
gbst.py
ADDED
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from math import gcd
|
3 |
+
import functools
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch import nn, einsum
|
7 |
+
|
8 |
+
from einops import rearrange, reduce, repeat
|
9 |
+
from einops.layers.torch import Rearrange
|
10 |
+
from transformers.modeling_utils import PreTrainedModel
|
11 |
+
|
12 |
+
|
13 |
+
def exists(val):
|
14 |
+
return val is not None
|
15 |
+
|
16 |
+
|
17 |
+
def lcm(*numbers):
|
18 |
+
return int(functools.reduce(lambda x, y: int((x * y) / gcd(x, y)), numbers, 1))
|
19 |
+
|
20 |
+
|
21 |
+
def masked_mean(tensor, mask, dim = -1):
|
22 |
+
diff_len = len(tensor.shape) - len(mask.shape)
|
23 |
+
mask = mask[(..., *((None,) * diff_len))]
|
24 |
+
tensor.masked_fill_(~mask, 0.)
|
25 |
+
|
26 |
+
total_el = mask.sum(dim = dim)
|
27 |
+
mean = tensor.sum(dim = dim) / total_el.clamp(min = 1.)
|
28 |
+
mean.masked_fill_(total_el == 0, 0.)
|
29 |
+
return mean
|
30 |
+
|
31 |
+
|
32 |
+
def next_divisible_length(seqlen, multiple):
|
33 |
+
return math.ceil(seqlen / multiple) * multiple
|
34 |
+
|
35 |
+
|
36 |
+
def pad_to_multiple(tensor, multiple, *, seq_dim, dim = -1, value = 0.):
|
37 |
+
seqlen = tensor.shape[seq_dim]
|
38 |
+
length = next_divisible_length(seqlen, multiple)
|
39 |
+
if length == seqlen:
|
40 |
+
return tensor
|
41 |
+
remainder = length - seqlen
|
42 |
+
pad_offset = (0,) * (-1 - dim) * 2
|
43 |
+
return F.pad(tensor, (*pad_offset, 0, remainder), value = value)
|
44 |
+
|
45 |
+
|
46 |
+
# helper classes
|
47 |
+
class Pad(nn.Module):
|
48 |
+
def __init__(self, padding, value = 0.):
|
49 |
+
super().__init__()
|
50 |
+
self.padding = padding
|
51 |
+
self.value = value
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
return F.pad(x, self.padding, value = self.value)
|
55 |
+
|
56 |
+
|
57 |
+
class DepthwiseConv1d(nn.Module):
|
58 |
+
def __init__(self, dim_in, dim_out, kernel_size):
|
59 |
+
super().__init__()
|
60 |
+
self.conv = nn.Conv1d(dim_in, dim_out, kernel_size, groups = dim_in)
|
61 |
+
self.proj_out = nn.Conv1d(dim_out, dim_out, 1)
|
62 |
+
|
63 |
+
def forward(self, x):
|
64 |
+
x = self.conv(x)
|
65 |
+
return self.proj_out(x)
|
66 |
+
|
67 |
+
|
68 |
+
# main class
|
69 |
+
class GBST(PreTrainedModel):
|
70 |
+
def _init_weights(self, module):
|
71 |
+
"""Initialize the weights"""
|
72 |
+
if isinstance(module, nn.Linear):
|
73 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
74 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
75 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
76 |
+
if module.bias is not None:
|
77 |
+
module.bias.data.zero_()
|
78 |
+
elif isinstance(module, nn.Embedding):
|
79 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
80 |
+
if module.padding_idx is not None:
|
81 |
+
module.weight.data[module.padding_idx].zero_()
|
82 |
+
elif isinstance(module, nn.LayerNorm):
|
83 |
+
module.bias.data.zero_()
|
84 |
+
module.weight.data.fill_(1.0)
|
85 |
+
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
*,
|
89 |
+
num_tokens,
|
90 |
+
dim,
|
91 |
+
max_block_size = None,
|
92 |
+
blocks = None,
|
93 |
+
downsample_factor = 4,
|
94 |
+
score_consensus_attn = True,
|
95 |
+
return_without_downsample = True,
|
96 |
+
config = None
|
97 |
+
):
|
98 |
+
super(GBST, self).__init__(config=config)
|
99 |
+
assert exists(max_block_size) ^ exists(blocks), 'either max_block_size or blocks are given on initialization'
|
100 |
+
self.word_embeddings = nn.Embedding(num_tokens, dim)
|
101 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, dim)
|
102 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, dim)
|
103 |
+
|
104 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
105 |
+
|
106 |
+
self.return_without_downsample = return_without_downsample
|
107 |
+
|
108 |
+
if exists(blocks):
|
109 |
+
assert isinstance(blocks, tuple), 'blocks must be a tuple of block sizes'
|
110 |
+
self.blocks = tuple(map(lambda el: el if isinstance(el, tuple) else (el, 0), blocks))
|
111 |
+
assert all([(offset < block_size) for block_size, offset in self.blocks]), 'offset must be always smaller than the block size'
|
112 |
+
|
113 |
+
max_block_size = max(list(map(lambda t: t[0], self.blocks)))
|
114 |
+
else:
|
115 |
+
self.blocks = tuple(map(lambda el: (el, 0), range(1, max_block_size + 1)))
|
116 |
+
|
117 |
+
self.pos_conv = nn.Sequential(
|
118 |
+
Pad((0, 0, 0, max_block_size - 1)),
|
119 |
+
Rearrange('b n d -> b d n'),
|
120 |
+
DepthwiseConv1d(dim, dim, kernel_size = max_block_size),
|
121 |
+
Rearrange('b d n -> b n d')
|
122 |
+
)
|
123 |
+
|
124 |
+
self.score_fn = nn.Sequential(
|
125 |
+
nn.Linear(dim, 1),
|
126 |
+
Rearrange('... () -> ...')
|
127 |
+
)
|
128 |
+
|
129 |
+
self.score_consensus_attn = score_consensus_attn
|
130 |
+
|
131 |
+
assert downsample_factor <= max_block_size, 'final downsample factor should be less than the maximum block size'
|
132 |
+
|
133 |
+
self.block_pad_multiple = lcm(*[block_size for block_size, _ in self.blocks])
|
134 |
+
self.downsample_factor = downsample_factor
|
135 |
+
|
136 |
+
def forward(self, input_ids, attention_mask=None, position_ids=None, token_type_ids=None, inputs_embeds=None):
|
137 |
+
b, n, block_mult, ds_factor, device = *input_ids.shape, self.block_pad_multiple, self.downsample_factor, input_ids.device
|
138 |
+
m = next_divisible_length(n, ds_factor)
|
139 |
+
|
140 |
+
# get character token embeddings
|
141 |
+
|
142 |
+
input_ids = self.word_embeddings(input_ids)
|
143 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
144 |
+
|
145 |
+
seq_len = input_ids.size()[1]
|
146 |
+
position_ids = self.position_ids[:, :seq_len]
|
147 |
+
position_embeddings = self.position_embeddings(position_ids)
|
148 |
+
|
149 |
+
input_ids = input_ids + token_type_embeddings + position_embeddings
|
150 |
+
# do a conv to generate the positions for the tokens
|
151 |
+
|
152 |
+
input_ids = self.pos_conv(input_ids)
|
153 |
+
|
154 |
+
# pad both sequence and attention_mask to length visibile by all block sizes from 0 to max block size
|
155 |
+
|
156 |
+
input_ids = pad_to_multiple(input_ids, block_mult, seq_dim=1, dim=-2)
|
157 |
+
|
158 |
+
if exists(attention_mask):
|
159 |
+
attention_mask = pad_to_multiple(attention_mask, block_mult, seq_dim=1, dim=-1, value=False)
|
160 |
+
|
161 |
+
# compute representations for all blocks by mean pooling
|
162 |
+
|
163 |
+
block_masks = []
|
164 |
+
block_reprs = []
|
165 |
+
|
166 |
+
for block_size, offset in self.blocks:
|
167 |
+
# clone the input sequence as well as the attention_mask, in order to pad for offsets
|
168 |
+
|
169 |
+
block_x = input_ids.clone()
|
170 |
+
|
171 |
+
if exists(attention_mask):
|
172 |
+
block_mask = attention_mask.clone()
|
173 |
+
|
174 |
+
# pad for offsets, if needed
|
175 |
+
|
176 |
+
need_padding = offset > 0
|
177 |
+
|
178 |
+
if need_padding:
|
179 |
+
left_offset, right_offset = (block_size - offset), offset
|
180 |
+
block_x = F.pad(block_x, (0, 0, left_offset, right_offset), value = 0.)
|
181 |
+
|
182 |
+
if exists(attention_mask):
|
183 |
+
block_mask = F.pad(block_mask, (left_offset, right_offset), value = False)
|
184 |
+
|
185 |
+
# group input sequence into blocks
|
186 |
+
|
187 |
+
blocks = rearrange(block_x, 'b (n m) d -> b n m d', m = block_size)
|
188 |
+
|
189 |
+
# either mean pool the blocks, or do a masked mean
|
190 |
+
|
191 |
+
if exists(attention_mask):
|
192 |
+
mask_blocks = rearrange(block_mask, 'b (n m) -> b n m', m = block_size)
|
193 |
+
block_repr = masked_mean(blocks, mask_blocks, dim = -2)
|
194 |
+
else:
|
195 |
+
block_repr = blocks.mean(dim = -2)
|
196 |
+
|
197 |
+
# append the block representations, as well as the pooled block masks
|
198 |
+
|
199 |
+
block_repr = repeat(block_repr, 'b n d -> b (n m) d', m = block_size)
|
200 |
+
|
201 |
+
if need_padding:
|
202 |
+
block_repr = block_repr[:, left_offset:-right_offset]
|
203 |
+
|
204 |
+
block_reprs.append(block_repr)
|
205 |
+
|
206 |
+
if exists(attention_mask):
|
207 |
+
mask_blocks = torch.any(mask_blocks, dim = -1)
|
208 |
+
mask_blocks = repeat(mask_blocks, 'b n -> b (n m)', m = block_size)
|
209 |
+
|
210 |
+
if need_padding:
|
211 |
+
mask_blocks = mask_blocks[:, left_offset:-right_offset]
|
212 |
+
|
213 |
+
block_masks.append(mask_blocks)
|
214 |
+
|
215 |
+
# stack all the block representations
|
216 |
+
|
217 |
+
block_reprs = torch.stack(block_reprs, dim = 2)
|
218 |
+
|
219 |
+
# calculate scores and softmax across the block size dimension
|
220 |
+
|
221 |
+
scores = self.score_fn(block_reprs)
|
222 |
+
|
223 |
+
if exists(attention_mask):
|
224 |
+
block_masks = torch.stack(block_masks, dim = 2)
|
225 |
+
max_neg_value = -torch.finfo(scores.dtype).max
|
226 |
+
scores = scores.masked_fill(~block_masks, max_neg_value)
|
227 |
+
|
228 |
+
scores = scores.softmax(dim = 2)
|
229 |
+
|
230 |
+
# do the cheap consensus attention, eq (5) in paper
|
231 |
+
|
232 |
+
if self.score_consensus_attn:
|
233 |
+
score_sim = einsum('b i d, b j d -> b i j', scores, scores)
|
234 |
+
|
235 |
+
if exists(attention_mask):
|
236 |
+
cross_mask = rearrange(attention_mask, 'b i -> b i ()') * rearrange(attention_mask, 'b j -> b () j')
|
237 |
+
max_neg_value = -torch.finfo(score_sim.dtype).max
|
238 |
+
score_sim = score_sim.masked_fill(~cross_mask, max_neg_value)
|
239 |
+
|
240 |
+
score_attn = score_sim.softmax(dim=-1)
|
241 |
+
scores = einsum('b i j, b j m -> b i m', score_attn, scores)
|
242 |
+
|
243 |
+
# multiply the block representations by the position-wise scores
|
244 |
+
|
245 |
+
scores = rearrange(scores, 'b n m -> b n m ()')
|
246 |
+
input_ids = (block_reprs * scores).sum(dim=2)
|
247 |
+
|
248 |
+
# truncate to length divisible by downsample factor
|
249 |
+
|
250 |
+
input_ids = input_ids[:, :m]
|
251 |
+
|
252 |
+
original = None
|
253 |
+
if self.return_without_downsample:
|
254 |
+
original = torch.clone(input_ids)
|
255 |
+
|
256 |
+
input_ids, attention_mask = self.down_sample(input_ids, attention_mask, ds_factor)
|
257 |
+
|
258 |
+
return input_ids, attention_mask, original
|
259 |
+
|
260 |
+
@staticmethod
|
261 |
+
def down_sample(input_ids, attention_mask, ds_factor):
|
262 |
+
n = input_ids.shape[1]
|
263 |
+
m = next_divisible_length(n, ds_factor)
|
264 |
+
if exists(attention_mask):
|
265 |
+
attention_mask = attention_mask[:, :m]
|
266 |
+
|
267 |
+
# final mean pooling downsample
|
268 |
+
input_ids = rearrange(input_ids, 'b (n m) d -> b n m d', m=ds_factor)
|
269 |
+
|
270 |
+
if exists(attention_mask):
|
271 |
+
attention_mask = rearrange(attention_mask, 'b (n m) -> b n m', m=ds_factor)
|
272 |
+
input_ids = masked_mean(input_ids, attention_mask, dim=2)
|
273 |
+
attention_mask = torch.any(attention_mask, dim=-1)
|
274 |
+
else:
|
275 |
+
input_ids = input_ids.mean(dim=-2)
|
276 |
+
return input_ids, attention_mask
|
277 |
+
|
278 |
+
def block_score(self, input_ids, attention_mask=None, position_ids=None, token_type_ids=None, inputs_embeds=None):
|
279 |
+
b, n, block_mult, ds_factor, device = *input_ids.shape, self.block_pad_multiple, self.downsample_factor, input_ids.device
|
280 |
+
m = next_divisible_length(n, ds_factor)
|
281 |
+
|
282 |
+
# get character token embeddings
|
283 |
+
|
284 |
+
input_ids = self.word_embeddings(input_ids)
|
285 |
+
|
286 |
+
# do a conv to generate the positions for the tokens
|
287 |
+
|
288 |
+
input_ids = self.pos_conv(input_ids)
|
289 |
+
|
290 |
+
# pad both sequence and attention_mask to length visibile by all block sizes from 0 to max block size
|
291 |
+
|
292 |
+
input_ids = pad_to_multiple(input_ids, block_mult, seq_dim=1, dim=-2)
|
293 |
+
|
294 |
+
if exists(attention_mask):
|
295 |
+
attention_mask = pad_to_multiple(attention_mask, block_mult, seq_dim=1, dim=-1, value=False)
|
296 |
+
|
297 |
+
# compute representations for all blocks by mean pooling
|
298 |
+
|
299 |
+
block_masks = []
|
300 |
+
block_reprs = []
|
301 |
+
|
302 |
+
for block_size, offset in self.blocks:
|
303 |
+
# clone the input sequence as well as the attention_mask, in order to pad for offsets
|
304 |
+
|
305 |
+
block_x = input_ids.clone()
|
306 |
+
|
307 |
+
if exists(attention_mask):
|
308 |
+
block_mask = attention_mask.clone()
|
309 |
+
|
310 |
+
# pad for offsets, if needed
|
311 |
+
|
312 |
+
need_padding = offset > 0
|
313 |
+
|
314 |
+
if need_padding:
|
315 |
+
left_offset, right_offset = (block_size - offset), offset
|
316 |
+
block_x = F.pad(block_x, (0, 0, left_offset, right_offset), value = 0.)
|
317 |
+
|
318 |
+
if exists(attention_mask):
|
319 |
+
block_mask = F.pad(block_mask, (left_offset, right_offset), value = False)
|
320 |
+
|
321 |
+
# group input sequence into blocks
|
322 |
+
|
323 |
+
blocks = rearrange(block_x, 'b (n m) d -> b n m d', m = block_size)
|
324 |
+
|
325 |
+
# either mean pool the blocks, or do a masked mean
|
326 |
+
|
327 |
+
if exists(attention_mask):
|
328 |
+
mask_blocks = rearrange(block_mask, 'b (n m) -> b n m', m = block_size)
|
329 |
+
block_repr = masked_mean(blocks, mask_blocks, dim = -2)
|
330 |
+
else:
|
331 |
+
block_repr = blocks.mean(dim = -2)
|
332 |
+
|
333 |
+
# append the block representations, as well as the pooled block masks
|
334 |
+
|
335 |
+
block_repr = repeat(block_repr, 'b n d -> b (n m) d', m = block_size)
|
336 |
+
|
337 |
+
if need_padding:
|
338 |
+
block_repr = block_repr[:, left_offset:-right_offset]
|
339 |
+
|
340 |
+
block_reprs.append(block_repr)
|
341 |
+
|
342 |
+
if exists(attention_mask):
|
343 |
+
mask_blocks = torch.any(mask_blocks, dim = -1)
|
344 |
+
mask_blocks = repeat(mask_blocks, 'b n -> b (n m)', m = block_size)
|
345 |
+
|
346 |
+
if need_padding:
|
347 |
+
mask_blocks = mask_blocks[:, left_offset:-right_offset]
|
348 |
+
|
349 |
+
block_masks.append(mask_blocks)
|
350 |
+
|
351 |
+
# stack all the block representations
|
352 |
+
|
353 |
+
block_reprs = torch.stack(block_reprs, dim = 2)
|
354 |
+
|
355 |
+
# calculate scores and softmax across the block size dimension
|
356 |
+
|
357 |
+
scores = self.score_fn(block_reprs)
|
358 |
+
|
359 |
+
if exists(attention_mask):
|
360 |
+
block_masks = torch.stack(block_masks, dim = 2)
|
361 |
+
max_neg_value = -torch.finfo(scores.dtype).max
|
362 |
+
scores = scores.masked_fill(~block_masks, max_neg_value)
|
363 |
+
|
364 |
+
scores = scores.softmax(dim = 2)
|
365 |
+
|
366 |
+
# do the cheap consensus attention, eq (5) in paper
|
367 |
+
|
368 |
+
if self.score_consensus_attn:
|
369 |
+
score_sim = einsum('b i d, b j d -> b i j', scores, scores)
|
370 |
+
|
371 |
+
if exists(attention_mask):
|
372 |
+
cross_mask = rearrange(attention_mask, 'b i -> b i ()') * rearrange(attention_mask, 'b j -> b () j')
|
373 |
+
max_neg_value = -torch.finfo(score_sim.dtype).max
|
374 |
+
score_sim = score_sim.masked_fill(~cross_mask, max_neg_value)
|
375 |
+
|
376 |
+
score_attn = score_sim.softmax(dim=-1)
|
377 |
+
scores = einsum('b i j, b j m -> b i m', score_attn, scores)
|
378 |
+
|
379 |
+
# multiply the block representations by the position-wise scores
|
380 |
+
|
381 |
+
scores = rearrange(scores, 'b n m -> b n m ()')
|
382 |
+
input_ids = (block_reprs * scores).sum(dim=2)
|
383 |
+
|
384 |
+
# truncate to length divisible by downsample factor
|
385 |
+
|
386 |
+
input_ids = input_ids[:, :m]
|
387 |
+
|
388 |
+
if exists(attention_mask):
|
389 |
+
attention_mask = attention_mask[:, :m]
|
390 |
+
|
391 |
+
original = None
|
392 |
+
if self.return_without_downsample:
|
393 |
+
original = torch.clone(input_ids)
|
394 |
+
|
395 |
+
# final mean pooling downsample
|
396 |
+
input_ids = rearrange(input_ids, 'b (n m) d -> b n m d', m=ds_factor)
|
397 |
+
|
398 |
+
if exists(attention_mask):
|
399 |
+
attention_mask = rearrange(attention_mask, 'b (n m) -> b n m', m=ds_factor)
|
400 |
+
input_ids = masked_mean(input_ids, attention_mask, dim=2)
|
401 |
+
attention_mask = torch.any(attention_mask, dim=-1)
|
402 |
+
else:
|
403 |
+
input_ids = input_ids.mean(dim=-2)
|
404 |
+
|
405 |
+
return scores
|
modeling_charmen.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.models.electra.modeling_electra import ElectraPreTrainedModel, ElectraEncoder, ElectraLayer, \
|
2 |
+
ModelOutput, ElectraForSequenceClassification, SequenceClassifierOutput, ElectraForTokenClassification, \
|
3 |
+
ElectraForMultipleChoice
|
4 |
+
from .config import CharmenElectraConfig
|
5 |
+
from .gbst import GBST
|
6 |
+
import torch.nn as nn
|
7 |
+
import copy
|
8 |
+
import torch
|
9 |
+
from torch import Tensor
|
10 |
+
from dataclasses import dataclass
|
11 |
+
from typing import Optional, Tuple
|
12 |
+
from typing import OrderedDict as OrderDictType
|
13 |
+
from collections import OrderedDict
|
14 |
+
from transformers.activations import get_activation
|
15 |
+
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class CharmenElectraModelOutput(ModelOutput):
|
19 |
+
"""
|
20 |
+
Output type of :class:`~.CharmenElectraModel`.
|
21 |
+
"""
|
22 |
+
downsampled_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
23 |
+
upsampled_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
24 |
+
|
25 |
+
|
26 |
+
class CharmenElectraModel(ElectraPreTrainedModel):
|
27 |
+
config_class = CharmenElectraConfig
|
28 |
+
|
29 |
+
def __init__(self, config: CharmenElectraConfig, compatibility_with_transformers=False):
|
30 |
+
super().__init__(config)
|
31 |
+
self.embeddings: GBST = GBST(
|
32 |
+
num_tokens=config.vocab_size,
|
33 |
+
# number of tokens, should be 256 for byte encoding (+ 1 special token for padding in this example)
|
34 |
+
dim=config.embedding_size, # dimension of token and intra-block positional embedding
|
35 |
+
max_block_size=config.max_block_size, # maximum block size
|
36 |
+
downsample_factor=config.downsampling_factor,
|
37 |
+
# the final downsample factor by which the sequence length will decrease by
|
38 |
+
score_consensus_attn=config.score_consensus_attn,
|
39 |
+
config=config
|
40 |
+
# whether to do the cheap score consensus (aka attention) as in eq. 5 in the paper
|
41 |
+
)
|
42 |
+
self.compatibility_with_transformers = compatibility_with_transformers
|
43 |
+
|
44 |
+
if config.embedding_size != config.hidden_size:
|
45 |
+
self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size)
|
46 |
+
|
47 |
+
self.upsampling = nn.Upsample(scale_factor=config.downsampling_factor, mode='nearest')
|
48 |
+
self.upsampling_convolution = nn.Conv1d(in_channels=config.hidden_size * 2,
|
49 |
+
out_channels=config.hidden_size,
|
50 |
+
kernel_size=(config.downsampling_factor*2-1,),
|
51 |
+
padding='same',
|
52 |
+
dilation=(1,))
|
53 |
+
self.upsample_output = config.upsample_output
|
54 |
+
|
55 |
+
# config.num_hidden_layers = config.num_hidden_layers - 2
|
56 |
+
|
57 |
+
cfg = copy.deepcopy(config)
|
58 |
+
cfg.num_hidden_layers = config.num_hidden_layers - 2
|
59 |
+
self.encoder = ElectraEncoder(cfg)
|
60 |
+
|
61 |
+
# frame_hidden_size
|
62 |
+
self.encoder_first_layer = ElectraLayer(config)
|
63 |
+
self.encoder_last_layer = ElectraLayer(config)
|
64 |
+
|
65 |
+
self.config = config
|
66 |
+
self.init_weights()
|
67 |
+
|
68 |
+
def get_input_embeddings(self):
|
69 |
+
return self.embeddings.word_embeddings
|
70 |
+
|
71 |
+
def set_input_embeddings(self, value):
|
72 |
+
self.embeddings.word_embeddings = value
|
73 |
+
|
74 |
+
def _prune_heads(self, heads_to_prune):
|
75 |
+
"""
|
76 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
77 |
+
class PreTrainedModel
|
78 |
+
"""
|
79 |
+
for layer, heads in heads_to_prune.items():
|
80 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
81 |
+
|
82 |
+
def forward(
|
83 |
+
self,
|
84 |
+
input_ids=None,
|
85 |
+
attention_mask=None,
|
86 |
+
token_type_ids=None,
|
87 |
+
position_ids=None,
|
88 |
+
head_mask=None,
|
89 |
+
inputs_embeds=None,
|
90 |
+
output_attentions=None,
|
91 |
+
output_hidden_states=None,
|
92 |
+
return_dict=None,
|
93 |
+
):
|
94 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
95 |
+
output_hidden_states = (
|
96 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
97 |
+
)
|
98 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
99 |
+
|
100 |
+
if input_ids.shape.__len__() == 1:
|
101 |
+
input_ids = input_ids.view(1, -1)
|
102 |
+
attention_mask = attention_mask.view(1, -1)
|
103 |
+
token_type_ids = token_type_ids.view(1, -1)
|
104 |
+
|
105 |
+
if input_ids is not None and inputs_embeds is not None:
|
106 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
107 |
+
elif input_ids is not None:
|
108 |
+
input_shape = input_ids.size()
|
109 |
+
elif inputs_embeds is not None:
|
110 |
+
input_shape = inputs_embeds.size()[:-1]
|
111 |
+
else:
|
112 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
113 |
+
|
114 |
+
batch_size, seq_length = input_shape
|
115 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
116 |
+
|
117 |
+
if attention_mask is None:
|
118 |
+
attention_mask = torch.ones(input_shape, device=device)
|
119 |
+
if token_type_ids is None:
|
120 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
121 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
122 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
123 |
+
token_type_ids = buffered_token_type_ids_expanded
|
124 |
+
else:
|
125 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
126 |
+
|
127 |
+
unscaled_attention_mask = torch.clone(attention_mask)
|
128 |
+
|
129 |
+
_, _, unscaled_hidden_states = self.embeddings(
|
130 |
+
input_ids=input_ids, attention_mask=attention_mask,
|
131 |
+
position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
|
132 |
+
)
|
133 |
+
|
134 |
+
if hasattr(self, "embeddings_project"):
|
135 |
+
unscaled_hidden_states = self.embeddings_project(unscaled_hidden_states)
|
136 |
+
|
137 |
+
extended_unscaled_attention_mask = self.get_extended_attention_mask(unscaled_attention_mask, input_shape,
|
138 |
+
device)
|
139 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
140 |
+
|
141 |
+
unscaled_hidden_states = self.encoder_first_layer(unscaled_hidden_states, extended_unscaled_attention_mask,
|
142 |
+
None, None, None, None, False)[0]
|
143 |
+
|
144 |
+
hidden_states, attention_mask = self.embeddings.down_sample(unscaled_hidden_states, unscaled_attention_mask,
|
145 |
+
self.config.downsampling_factor)
|
146 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
147 |
+
|
148 |
+
encoder_output = self.encoder(
|
149 |
+
hidden_states,
|
150 |
+
attention_mask=extended_attention_mask,
|
151 |
+
head_mask=head_mask,
|
152 |
+
output_attentions=output_attentions,
|
153 |
+
output_hidden_states=output_hidden_states,
|
154 |
+
return_dict=return_dict,
|
155 |
+
)
|
156 |
+
|
157 |
+
downsampled_hidden_states = encoder_output[0]
|
158 |
+
hidden_states = encoder_output[0]
|
159 |
+
|
160 |
+
# upsampling
|
161 |
+
upsampled = self.upsampling(hidden_states.permute(0, 2, 1)).permute(0, 2, 1)
|
162 |
+
hidden_states = torch.cat([unscaled_hidden_states, upsampled], dim=-1)
|
163 |
+
# padded_hidden_states = F.pad(hidden_states.permute(0, 2, 1), (3, 3))
|
164 |
+
hidden_states = self.upsampling_convolution(hidden_states.permute(0, 2, 1)).permute(0, 2, 1)
|
165 |
+
|
166 |
+
hidden_states = self.encoder_last_layer(hidden_states, extended_unscaled_attention_mask,
|
167 |
+
None, None, None, None, False)
|
168 |
+
|
169 |
+
upsampled_output = hidden_states[0]
|
170 |
+
|
171 |
+
return CharmenElectraModelOutput(
|
172 |
+
downsampled_hidden_states=downsampled_hidden_states,
|
173 |
+
upsampled_hidden_states=upsampled_output
|
174 |
+
)
|
175 |
+
|
176 |
+
def load_state_dict(self, state_dict: OrderDictType[str, Tensor], strict: bool = True):
|
177 |
+
model = OrderedDict()
|
178 |
+
prefix = "discriminator.electra."
|
179 |
+
|
180 |
+
for key, value in state_dict.items():
|
181 |
+
if key.startswith(prefix):
|
182 |
+
model[key[len(prefix):]] = value
|
183 |
+
|
184 |
+
super(CharmenElectraModel, self).load_state_dict(model, strict)
|
185 |
+
|
186 |
+
|
187 |
+
class CharmenElectraClassificationHead(nn.Module):
|
188 |
+
"""Head for sentence-level classification tasks."""
|
189 |
+
|
190 |
+
def __init__(self, config: CharmenElectraConfig):
|
191 |
+
super().__init__()
|
192 |
+
self.config = config
|
193 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
194 |
+
classifier_dropout = (
|
195 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
196 |
+
)
|
197 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
198 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
199 |
+
self.ds_factor = config.downsampling_factor
|
200 |
+
|
201 |
+
def forward(self, features, **kwargs):
|
202 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
203 |
+
x = self.dropout(x)
|
204 |
+
x = self.dense(x)
|
205 |
+
x = get_activation(self.config.summary_activation)(x)
|
206 |
+
x = self.dropout(x)
|
207 |
+
x = self.out_proj(x)
|
208 |
+
return x
|
209 |
+
|
210 |
+
|
211 |
+
class CharmenElectraForSequenceClassification(ElectraForSequenceClassification):
|
212 |
+
config_class = CharmenElectraConfig
|
213 |
+
|
214 |
+
def __init__(self, config: CharmenElectraConfig, class_weight=None, label_smoothing=0.0):
|
215 |
+
super().__init__(config)
|
216 |
+
|
217 |
+
self.num_labels = config.num_labels
|
218 |
+
self.config = config
|
219 |
+
self.model = CharmenElectraModel(config, compatibility_with_transformers=True)
|
220 |
+
self.classifier = CharmenElectraClassificationHead(config)
|
221 |
+
self.cls_loss_fct = torch.nn.CrossEntropyLoss(weight=class_weight, label_smoothing=label_smoothing)
|
222 |
+
|
223 |
+
self.init_weights()
|
224 |
+
|
225 |
+
def forward(
|
226 |
+
self,
|
227 |
+
input_ids=None,
|
228 |
+
attention_mask=None,
|
229 |
+
token_type_ids=None,
|
230 |
+
position_ids=None,
|
231 |
+
head_mask=None,
|
232 |
+
inputs_embeds=None,
|
233 |
+
labels=None,
|
234 |
+
output_attentions=None,
|
235 |
+
output_hidden_states=None,
|
236 |
+
return_dict=None,
|
237 |
+
):
|
238 |
+
output_discriminator: CharmenElectraModelOutput = self.model(input_ids, attention_mask, token_type_ids)
|
239 |
+
|
240 |
+
if self.carmen_config.upsample_output:
|
241 |
+
cls = self.classifier(output_discriminator.upsampled_hidden_states)
|
242 |
+
else:
|
243 |
+
cls = self.classifier(output_discriminator.downsampled_hidden_states)
|
244 |
+
cls_loss = self.cls_loss_fct(cls, labels)
|
245 |
+
|
246 |
+
return SequenceClassifierOutput(
|
247 |
+
loss=cls_loss,
|
248 |
+
logits=cls,
|
249 |
+
hidden_states=output_discriminator.downsampled_hidden_states,
|
250 |
+
attentions=None,
|
251 |
+
)
|
252 |
+
|
253 |
+
def load_state_dict(self, state_dict: OrderDictType[str, Tensor], strict: bool = True):
|
254 |
+
model = OrderedDict()
|
255 |
+
prefix = "discriminator.electra."
|
256 |
+
|
257 |
+
for key, value in state_dict.items():
|
258 |
+
if key.startswith(prefix):
|
259 |
+
model[key[len(prefix):]] = value
|
260 |
+
|
261 |
+
self.model.load_state_dict(state_dict=model, strict=strict)
|
262 |
+
|
263 |
+
|
264 |
+
class CharmenElectraForTokenClassification(ElectraForTokenClassification):
|
265 |
+
def __init__(self, config: CharmenElectraConfig, class_weight=None, label_smoothing=0.0):
|
266 |
+
super().__init__(config)
|
267 |
+
|
268 |
+
self.num_labels = config.num_labels
|
269 |
+
self.config = config
|
270 |
+
|
271 |
+
self.carmen_config = config
|
272 |
+
self.model = CharmenElectraModel(config, compatibility_with_transformers=True)
|
273 |
+
|
274 |
+
classifier_dropout = (
|
275 |
+
config.discriminator.classifier_dropout if config.discriminator.classifier_dropout is not None else config.discriminator.hidden_dropout_prob
|
276 |
+
)
|
277 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
278 |
+
self.classifier = nn.Linear(config.discriminator.hidden_size, config.num_labels)
|
279 |
+
|
280 |
+
self.cls_loss_fct = torch.nn.CrossEntropyLoss(weight=class_weight, label_smoothing=label_smoothing)
|
281 |
+
|
282 |
+
self.init_weights()
|
283 |
+
|
284 |
+
def forward(
|
285 |
+
self,
|
286 |
+
input_ids=None,
|
287 |
+
attention_mask=None,
|
288 |
+
token_type_ids=None,
|
289 |
+
position_ids=None,
|
290 |
+
head_mask=None,
|
291 |
+
inputs_embeds=None,
|
292 |
+
labels=None,
|
293 |
+
output_attentions=None,
|
294 |
+
output_hidden_states=None,
|
295 |
+
return_dict=None,
|
296 |
+
):
|
297 |
+
output_discriminator: CharmenElectraModelOutput = self.model(
|
298 |
+
input_ids, attention_mask, token_type_ids)
|
299 |
+
|
300 |
+
discriminator_sequence_output = self.dropout(output_discriminator.upsampled_hidden_states)
|
301 |
+
logits = self.classifier(discriminator_sequence_output)
|
302 |
+
|
303 |
+
if labels is not None:
|
304 |
+
cls_loss = self.cls_loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
|
305 |
+
else:
|
306 |
+
cls_loss = None
|
307 |
+
|
308 |
+
return SequenceClassifierOutput(
|
309 |
+
loss=cls_loss,
|
310 |
+
logits=logits,
|
311 |
+
hidden_states=output_discriminator.upsampled_hidden_states,
|
312 |
+
attentions=None,
|
313 |
+
)
|
314 |
+
|
315 |
+
def get_input_embeddings(self) -> nn.Module:
|
316 |
+
return self.electra.get_input_embeddings()
|
317 |
+
|
318 |
+
def load_state_dict(self, state_dict: OrderDictType[str, Tensor], strict: bool = True):
|
319 |
+
model = OrderedDict()
|
320 |
+
prefix = "discriminator.electra."
|
321 |
+
|
322 |
+
for key, value in state_dict.items():
|
323 |
+
if key.startswith(prefix):
|
324 |
+
model[key[len(prefix):]] = value
|
325 |
+
|
326 |
+
self.model.load_state_dict(state_dict=model, strict=strict)
|
327 |
+
|
328 |
+
|
329 |
+
class Pooler(nn.Module):
|
330 |
+
def __init__(self, config):
|
331 |
+
super().__init__()
|
332 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
333 |
+
self.activation = nn.Tanh()
|
334 |
+
|
335 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
336 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
337 |
+
# to the first token.
|
338 |
+
first_token_tensor = hidden_states[:, 0]
|
339 |
+
pooled_output = self.dense(first_token_tensor)
|
340 |
+
pooled_output = self.activation(pooled_output)
|
341 |
+
return pooled_output
|
342 |
+
|
343 |
+
|
344 |
+
class CharmenElectraForMultipleChoice(ElectraForMultipleChoice):
|
345 |
+
def __init__(self, config: CharmenElectraConfig, class_weight=None, label_smoothing=0.0):
|
346 |
+
super().__init__(config)
|
347 |
+
self.num_labels = config.num_labels
|
348 |
+
self.config = config
|
349 |
+
self.carmen_config = config
|
350 |
+
self.model = CharmenElectraModel(config, compatibility_with_transformers=True)
|
351 |
+
self.pooler = Pooler(config)
|
352 |
+
|
353 |
+
classifier_dropout = (
|
354 |
+
config.classifier_dropout if config.discriminator.classifier_dropout is not None else config.hidden_dropout_prob
|
355 |
+
)
|
356 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
357 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
358 |
+
|
359 |
+
self.cls_loss_fct = torch.nn.CrossEntropyLoss(weight=class_weight, label_smoothing=label_smoothing)
|
360 |
+
|
361 |
+
self.init_weights()
|
362 |
+
|
363 |
+
def forward(
|
364 |
+
self,
|
365 |
+
input_ids=None,
|
366 |
+
attention_mask=None,
|
367 |
+
token_type_ids=None,
|
368 |
+
position_ids=None,
|
369 |
+
head_mask=None,
|
370 |
+
inputs_embeds=None,
|
371 |
+
labels=None,
|
372 |
+
output_attentions=None,
|
373 |
+
output_hidden_states=None,
|
374 |
+
return_dict=None,
|
375 |
+
):
|
376 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
377 |
+
|
378 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
379 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
380 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
381 |
+
|
382 |
+
output_discriminator: CharmenElectraModelOutput = self.model(
|
383 |
+
input_ids, attention_mask, token_type_ids)
|
384 |
+
|
385 |
+
if self.carmen_config.upsample_output:
|
386 |
+
pooled_output = self.pooler(output_discriminator.upsampled_hidden_states)
|
387 |
+
else:
|
388 |
+
pooled_output = self.pooler(output_discriminator.downsampled_hidden_states)
|
389 |
+
pooled_output = self.dropout(pooled_output)
|
390 |
+
logits = self.classifier(pooled_output)
|
391 |
+
reshaped_logits = logits.view(-1, num_choices)
|
392 |
+
|
393 |
+
cls_loss = self.cls_loss_fct(reshaped_logits, labels)
|
394 |
+
|
395 |
+
return SequenceClassifierOutput(
|
396 |
+
loss=cls_loss,
|
397 |
+
logits=reshaped_logits,
|
398 |
+
hidden_states=output_discriminator.downsampled_hidden_states,
|
399 |
+
attentions=None,
|
400 |
+
)
|
401 |
+
|
402 |
+
def load_state_dict(self, state_dict: OrderDictType[str, Tensor], strict: bool = True):
|
403 |
+
model = OrderedDict()
|
404 |
+
prefix = "discriminator.electra."
|
405 |
+
|
406 |
+
for key, value in state_dict.items():
|
407 |
+
if key.startswith(prefix):
|
408 |
+
model[key[len(prefix):]] = value
|
409 |
+
|
410 |
+
self.model.load_state_dict(state_dict=model, strict=strict)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7074667cdc918bf66a2b408b6e879995964891452d4dd598f0b42fbbdc0ee60b
|
3 |
+
size 173978597
|