--- library_name: transformers license: apache-2.0 base_model: echarlaix/tiny-random-PhiForCausalLM tags: - axolotl - generated_from_trainer datasets: - argilla/databricks-dolly-15k-curated-en model-index: - name: tiny-random-PhiForCausalLM results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: echarlaix/tiny-random-PhiForCausalLM batch_size: 128 bf16: true chat_template: tokenizer_default_fallback_alpaca datasets: - format: custom path: argilla/databricks-dolly-15k-curated-en type: field_input: original-instruction field_instruction: original-instruction field_output: original-response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' device_map: auto eval_sample_packing: false eval_steps: 200 flash_attention: true gradient_checkpointing: true group_by_length: true hub_model_id: SystemAdmin123/tiny-random-PhiForCausalLM hub_strategy: checkpoint learning_rate: 0.0002 logging_steps: 10 lr_scheduler: cosine max_steps: 10000 micro_batch_size: 32 model_type: AutoModelForCausalLM num_epochs: 100 optimizer: adamw_bnb_8bit output_dir: /root/.sn56/axolotl/tmp/tiny-random-PhiForCausalLM pad_to_sequence_len: true resize_token_embeddings_to_32x: false sample_packing: true save_steps: 200 save_total_limit: 1 sequence_len: 2048 special_tokens: pad_token: <|endoftext|> tokenizer_type: GPTNeoXTokenizerFast torch_dtype: bf16 training_args_kwargs: hub_private_repo: true trust_remote_code: true val_set_size: 0.1 wandb_entity: '' wandb_mode: online wandb_name: echarlaix/tiny-random-PhiForCausalLM-argilla/databricks-dolly-15k-curated-en wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: default warmup_ratio: 0.05 ```

# tiny-random-PhiForCausalLM This model is a fine-tuned version of [echarlaix/tiny-random-PhiForCausalLM](https://huggingface.co/echarlaix/tiny-random-PhiForCausalLM) on the argilla/databricks-dolly-15k-curated-en dataset. It achieves the following results on the evaluation set: - Loss: 6.3360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.1 | 1 | 6.9373 | | 6.3375 | 20.0 | 200 | 6.3360 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0