--- library_name: transformers base_model: trl-internal-testing/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer datasets: - argilla/databricks-dolly-15k-curated-en model-index: - name: tiny-random-LlamaForCausalLM results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: trl-internal-testing/tiny-random-LlamaForCausalLM batch_size: 128 bf16: true chat_template: tokenizer_default_fallback_alpaca datasets: - format: custom path: argilla/databricks-dolly-15k-curated-en type: field_input: original-instruction field_instruction: original-instruction field_output: original-response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' device_map: auto eval_sample_packing: false eval_steps: 20 flash_attention: true gradient_checkpointing: true group_by_length: true hub_model_id: SystemAdmin123/tiny-random-LlamaForCausalLM hub_strategy: checkpoint learning_rate: 0.0002 logging_steps: 10 lr_scheduler: cosine max_steps: 10000 micro_batch_size: 32 model_type: AutoModelForCausalLM num_epochs: 100 optimizer: adamw_bnb_8bit output_dir: /root/.sn56/axolotl/tmp/tiny-random-LlamaForCausalLM pad_to_sequence_len: true resize_token_embeddings_to_32x: false sample_packing: true save_steps: 20 save_total_limit: 1 sequence_len: 2048 tokenizer_type: LlamaTokenizerFast torch_dtype: bf16 training_args_kwargs: hub_private_repo: true trust_remote_code: true val_set_size: 0.1 wandb_entity: '' wandb_mode: online wandb_name: trl-internal-testing/tiny-random-LlamaForCausalLM-argilla/databricks-dolly-15k-curated-en wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: default warmup_ratio: 0.05 ```

# tiny-random-LlamaForCausalLM This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the argilla/databricks-dolly-15k-curated-en dataset. It achieves the following results on the evaluation set: - Loss: 10.1817 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | No log | 0.1667 | 1 | 10.3764 | | 10.3632 | 3.3333 | 20 | 10.3538 | | 10.3073 | 6.6667 | 40 | 10.2840 | | 10.2203 | 10.0 | 60 | 10.2082 | | 10.1812 | 13.3333 | 80 | 10.1828 | | 10.1767 | 16.6667 | 100 | 10.1817 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0