--- library_name: transformers base_model: trl-internal-testing/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer datasets: - argilla/databricks-dolly-15k-curated-en model-index: - name: tiny-random-LlamaForCausalLM results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: trl-internal-testing/tiny-random-LlamaForCausalLM batch_size: 32 bf16: true chat_template: tokenizer_default_fallback_alpaca datasets: - format: custom path: argilla/databricks-dolly-15k-curated-en type: field_input: original-instruction field_instruction: original-instruction field_output: original-response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' device_map: auto eval_sample_packing: false eval_steps: 200 flash_attention: true gpu_memory_limit: 80GiB group_by_length: true hub_model_id: SystemAdmin123/tiny-random-LlamaForCausalLM hub_strategy: checkpoint learning_rate: 0.0002 logging_steps: 10 lr_scheduler: cosine max_steps: 2500 micro_batch_size: 4 model_type: AutoModelForCausalLM num_epochs: 100 optimizer: adamw_bnb_8bit output_dir: /root/.sn56/axolotl/outputs/tiny-random-LlamaForCausalLM pad_to_sequence_len: true resize_token_embeddings_to_32x: false sample_packing: false save_steps: 400 save_total_limit: 1 sequence_len: 2048 tokenizer_type: LlamaTokenizerFast torch_dtype: bf16 trust_remote_code: true val_set_size: 0.1 wandb_entity: '' wandb_mode: online wandb_name: trl-internal-testing/tiny-random-LlamaForCausalLM-argilla/databricks-dolly-15k-curated-en wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: default warmup_ratio: 0.05 ```

# tiny-random-LlamaForCausalLM This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the argilla/databricks-dolly-15k-curated-en dataset. It achieves the following results on the evaluation set: - Loss: 8.6989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 125 - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 10.3763 | | 9.7054 | 0.0592 | 200 | 9.6862 | | 8.9091 | 0.1184 | 400 | 8.9612 | | 8.7257 | 0.1776 | 600 | 8.7627 | | 8.7416 | 0.2368 | 800 | 8.7109 | | 8.5944 | 0.2959 | 1000 | 8.6982 | | 8.673 | 0.3551 | 1200 | 8.6963 | | 8.7511 | 0.4143 | 1400 | 8.6972 | | 8.729 | 0.4735 | 1600 | 8.6961 | | 8.6325 | 0.5327 | 1800 | 8.6948 | | 8.6338 | 0.5919 | 2000 | 8.6946 | | 8.7376 | 0.6511 | 2200 | 8.6954 | | 8.573 | 0.7103 | 2400 | 8.6989 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.4.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0