ppo-LunarLander-v2 / config.json
SymaAfsha's picture
Upload PPO LunarLander-v2 trained agent
cd6e71b verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e8694216de0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e8694216e80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e8694216f20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e8694216fc0>", "_build": "<function ActorCriticPolicy._build at 0x7e8694217060>", "forward": "<function ActorCriticPolicy.forward at 0x7e8694217100>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e86942171a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e8694217240>", "_predict": "<function ActorCriticPolicy._predict at 0x7e86942172e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e8694217380>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e8694217420>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e86942174c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e8697c7f280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1737626671352283632, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDLor0/YEc/1sYUPmTAhb5vNVW8t6G9PAAAAAAAAAAAw92gPju9gj5sp6e+DoZuvqCG17y99zS8AAAAAAAAAAAzc3U7YS/rPd6r2T3g2R2+raeNPV7ypjsAAAAAAAAAADO/37s9CA27l2ULvUUy7DvoHrY8GvrWvAAAgD8AAIA/mokQvUOipj+utLK8HVWhvvKbWL2uQ6Q7AAAAAAAAAABAZCa+f+AFP2DbhT6zWKi+MUQvPKBHarwAAAAAAAAAAIjDlb7sCG8/H22yvglKmr5TLYm+Ew+dPAAAAAAAAAAA02xDPiHcubz2G4w8kb3QtxXpLb4CKp24AACAPwAAgD8anIW9NxY+P3ptSL0mjpS+f6I7vSag+boAAAAAAAAAAE1rNj3rwLU/VpN1PtogUL6XV8w84iRWPQAAAAAAAAAAYE8bvoJNoj/u+8y+jc6lvtSlMb7SPG+9AAAAAAAAAABTiXi+a/hDP/l0FT6L9o6+4R8EvSZ6+TwAAAAAAAAAADMXt7yP8B0/fj2tPVKlar4m9Cy82SMGPgAAAAAAAAAALbFFPrSP47yWUGE81zcFPd9iPb6NpFo9AACAPwAAgD8zFpw8Kcxrul8hLDSqN9CuZeyEu2b/mLMAAIA/AACAP7NvBD5Jq5k/1mSoPrY4XL4nxho+6t2EPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJD5jtoi9uMAWyUTaUCjAF0lEdAmWhhZEDyOXV9lChoBkdAbu7BoEjgRGgHTS0BaAhHQJloyax5cC51fZQoaAZHQG6lqa5PM0RoB01AAWgIR0CZaapm29csdX2UKGgGR0Bvqghje9BbaAdNWgFoCEdAmWo8WoFV1nV9lChoBkdAbaMiV0Lc9GgHTTwBaAhHQJlr523azu51fZQoaAZHQG8LSVGCqZNoB00xAWgIR0CZa/wZwXImdX2UKGgGR0BxFLB1s+FDaAdN2QFoCEdAmW11XeWOZXV9lChoBkdAcDoaTfR/mWgHTRkBaAhHQJlt+iwjdHl1fZQoaAZHQHAG84gieNFoB01BAWgIR0CZgatGd7OWdX2UKGgGR0ByK5TrE9+xaAdNWgFoCEdAmYGzJuEVWXV9lChoBkdAcr6IyTINmWgHTUYBaAhHQJmD0BbOeJ51fZQoaAZHQHEqRoEjgQ9oB01fAWgIR0CZhGjsD4gzdX2UKGgGR0BubKHbh3qzaAdNaAFoCEdAmYRo7FKkEnV9lChoBkdAbLoEJSiudWgHTTEBaAhHQJmFP7fpD/l1fZQoaAZHQHAvwO8TSLJoB01RAWgIR0CZhbHhCMP0dX2UKGgGR0BvUSqABkqdaAdNjgFoCEdAmYYj+vQnhXV9lChoBkdANq87Qswta2gHTQsBaAhHQJmGsU9IPLB1fZQoaAZHQHAKt1uBMBZoB01mAWgIR0CZiAMaS9uhdX2UKGgGR0BtcGz2OAAiaAdNmgFoCEdAmYlG2w3YMHV9lChoBkdAcVADxb0OE2gHTUQBaAhHQJmKADIRywR1fZQoaAZHQG98iCz1K5FoB02GAWgIR0CZihnrY5DJdX2UKGgGR0ByaZt1p0wKaAdNNgFoCEdAmYsR6fJ3gXV9lChoBkdAcb+lV94NZ2gHTTUBaAhHQJmLkHfMwDh1fZQoaAZHQHH4tFnZkCpoB00+AWgIR0CZi95dnkDIdX2UKGgGR0BxSw1EVnEmaAdNfwFoCEdAmYvdRrJr+HV9lChoBkdAccBINVinYWgHTWMBaAhHQJmMEBOpKjB1fZQoaAZHQG+QsVUMoc9oB00jAWgIR0CZjWLW7OE/dX2UKGgGR0BxmMphF3INaAdNXwFoCEdAmY6jFERao3V9lChoBkdAcdwoLofSyGgHTVQBaAhHQJmOzv3JxNt1fZQoaAZHQG9g89fTkQxoB01PAWgIR0CZj+kcjqwAdX2UKGgGR0BxRIgntv4uaAdNZQFoCEdAmZA1Y2bXpXV9lChoBkdAcU/kAggX/GgHTWcBaAhHQJmRH114gRt1fZQoaAZHQHJP5oPCl8BoB01jAWgIR0CZkZNGViWndX2UKGgGR0BxMQ0zj3mFaAdNPAFoCEdAmZGbzkIX03V9lChoBkdAcZr4yoGY8mgHTSgBaAhHQJmSKpR4yGl1fZQoaAZHQHBrnG8274BoB009AWgIR0CZk5D9OymidX2UKGgGR0A4BAqur6tUaAdNEwFoCEdAmZPFPznRs3V9lChoBkdAbAcO0b961WgHTVcBaAhHQJmUWdy1eBx1fZQoaAZHQHCyYuCf6GhoB009AWgIR0CZlJ/A0sOHdX2UKGgGR0BvBF18stkGaAdNTQFoCEdAmZY1tXPqs3V9lChoBkdAcAOtRvWH12gHTVsBaAhHQJmWb+xW1dB1fZQoaAZHQG774WtU4rBoB01VAWgIR0CZmDUKiO/+dX2UKGgGR0BwttWbPQfIaAdNNAFoCEdAmZiRHf/FSHV9lChoBkdAcLL/0ulGgGgHTScBaAhHQJmZn225QP91fZQoaAZHQGxFM72criFoB01SAWgIR0CZm8vG6wt8dX2UKGgGR0BuNlLL6k6+aAdNlwFoCEdAmZzSDqW1MXV9lChoBkdAcX/JAMUh3mgHTUMBaAhHQJmdBXmvGId1fZQoaAZHQG+C588cMmZoB004AWgIR0CZnU7f51vEdX2UKGgGR0Bwnr5bhWHUaAdNIwFoCEdAmZ+6Zx7zCnV9lChoBkdAcGlU47zTW2gHTZEBaAhHQJmghddE9dN1fZQoaAZHQG+az3h4t6JoB00+AWgIR0CZoLrQPZqVdX2UKGgGR0Bu2UFUyYXwaAdNawFoCEdAmaImUjcEeXV9lChoBkdAcE5FSKm8/WgHTSIBaAhHQJmiQOavzOJ1fZQoaAZHQG5mneaa1CxoB03cAWgIR0CZo6ht+CsfdX2UKGgGR0Bw3vT/hl19aAdNJgFoCEdAmbgPAbhm5HV9lChoBkdAb9djvuw5emgHTVEBaAhHQJm5UC5mRNh1fZQoaAZHQHE1XnEETxpoB00qAWgIR0CZuU+Eh7mddX2UKGgGR0BvErd30PH1aAdN5AFoCEdAmbmQ3cYZVHV9lChoBkdAcGtmxdIGyGgHTbgBaAhHQJm7Dv5P/Jh1fZQoaAZHQHGOE+TvAoJoB01HAWgIR0CZvBR5kbxWdX2UKGgGR0Bxi3TCtRvWaAdNNwFoCEdAmbyJR4yGjHV9lChoBkdAceLaLn9vTGgHTRQBaAhHQJm+E0VJtix1fZQoaAZHQG+mrmyPdVNoB01+AWgIR0CZv0Pxx1gZdX2UKGgGR0BxyUzBRAKOaAdNbwFoCEdAmcDCJGe+VXV9lChoBkdAcSboEB8x9GgHTWoBaAhHQJnBFeQdS2p1fZQoaAZHQHKFxXXAdn1oB01DAWgIR0CZweIjW07bdX2UKGgGR0Bu7E0DU3GXaAdN1wFoCEdAmcIQogFHKHV9lChoBkdAcKMDoQnQY2gHTW4BaAhHQJnCcYm9g4R1fZQoaAZHQFfHf29L6DZoB03oA2gIR0CZwpCW/rSmdX2UKGgGR0BykQ1jy4FzaAdNegFoCEdAmcK/2kBS1nV9lChoBkdAbXhx5LRKH2gHTTIBaAhHQJnC03VCojx1fZQoaAZHQHIi3Mt9QXRoB01EAWgIR0CZxCVk+X7cdX2UKGgGR0BxSLtiQT24aAdNZwFoCEdAmcUha1TisHV9lChoBkdAcMtfseGO/GgHTUMBaAhHQJnFluWKMvR1fZQoaAZHQHAxwZKnNxFoB02FAWgIR0CZxjk8A7xNdX2UKGgGR0BxxfblA/s3aAdNUwFoCEdAmckLhzeXRnV9lChoBkdAcGXV6/qPfmgHTTYBaAhHQJnJLAk9lmR1fZQoaAZHQCM//WDpTuRoB00OAWgIR0CZylujASFodX2UKGgGR0BuN5pJwsGxaAdNPQFoCEdAmctdkauOj3V9lChoBkdAb6YsgdOqN2gHTS0BaAhHQJnMtq+Jxed1fZQoaAZHQHBXmr8zhxZoB01LAWgIR0CZzRM/hVENdX2UKGgGR0BxPFtYSxqxaAdNQgFoCEdAmc0pKzzErHV9lChoBkdAbh7Xcxj8UGgHTUsBaAhHQJnN9+CsfaJ1fZQoaAZHQG76SvLX+VFoB01dAWgIR0CZzkcRlHz6dX2UKGgGR0BwVZ7IDHOsaAdNMwJoCEdAmc9NRWLgoHV9lChoBkdAcKlVIqbz9WgHTUoBaAhHQJnPqDQJHAh1fZQoaAZHQHGYjrRjSXtoB003AmgIR0CZz98an753dX2UKGgGR0ByTQ2bXpW4aAdNSQFoCEdAmdCq7I1cdHV9lChoBkdAcIiK7I1cdGgHTVkBaAhHQJnSQeuFHrh1fZQoaAZHQHGA8niNsFdoB008AWgIR0CZ1G7qIJqqdX2UKGgGR0BwluUHIIWyaAdNTAFoCEdAmdUUH6dlNHV9lChoBkdAcczp6hQFcWgHTUEBaAhHQJnWPFyaNMp1fZQoaAZHQG8EGDL8rI5oB00/AWgIR0CZ11MWoFV1dX2UKGgGR0BwSI0XP7emaAdNMgFoCEdAmdiy5uqFRHV9lChoBkdAcObatLcsUmgHTTUBaAhHQJnY7kxREWt1fZQoaAZHQG1H1TJhfBxoB01BAWgIR0CZ2pQbdadMdX2UKGgGR0BwOeuV5a/zaAdNYwFoCEdAmdqhnjABUHV9lChoBkdAcUrjR2KVIWgHTVEBaAhHQJnbtJqZc9p1fZQoaAZHQHCZvbGm1ploB00yAWgIR0CZ27dfsu3+dX2UKGgGR0BvoMNayKNyaAdNLwFoCEdAmdxVanrIHXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 300, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}