|
import torch |
|
|
|
|
|
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): |
|
"""Creates or loads a YOLO model |
|
|
|
Arguments: |
|
name (str): model name 'yolov3' or path 'path/to/best.pt' |
|
pretrained (bool): load pretrained weights into the model |
|
channels (int): number of input channels |
|
classes (int): number of model classes |
|
autoshape (bool): apply YOLO .autoshape() wrapper to model |
|
verbose (bool): print all information to screen |
|
device (str, torch.device, None): device to use for model parameters |
|
|
|
Returns: |
|
YOLO model |
|
""" |
|
from pathlib import Path |
|
|
|
from models.common import AutoShape, DetectMultiBackend |
|
from models.experimental import attempt_load |
|
from models.yolo import ClassificationModel, DetectionModel, SegmentationModel |
|
from utils.downloads import attempt_download |
|
from utils.general import LOGGER, check_requirements, intersect_dicts, logging |
|
from utils.torch_utils import select_device |
|
|
|
if not verbose: |
|
LOGGER.setLevel(logging.WARNING) |
|
check_requirements(exclude=('opencv-python', 'tensorboard', 'thop')) |
|
name = Path(name) |
|
path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name |
|
try: |
|
device = select_device(device) |
|
if pretrained and channels == 3 and classes == 80: |
|
try: |
|
model = DetectMultiBackend(path, device=device, fuse=autoshape) |
|
if autoshape: |
|
if model.pt and isinstance(model.model, ClassificationModel): |
|
LOGGER.warning('WARNING ⚠️ YOLO ClassificationModel is not yet AutoShape compatible. ' |
|
'You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224).') |
|
elif model.pt and isinstance(model.model, SegmentationModel): |
|
LOGGER.warning('WARNING ⚠️ YOLO SegmentationModel is not yet AutoShape compatible. ' |
|
'You will not be able to run inference with this model.') |
|
else: |
|
model = AutoShape(model) |
|
except Exception: |
|
model = attempt_load(path, device=device, fuse=False) |
|
else: |
|
cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] |
|
model = DetectionModel(cfg, channels, classes) |
|
if pretrained: |
|
ckpt = torch.load(attempt_download(path), map_location=device) |
|
csd = ckpt['model'].float().state_dict() |
|
csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) |
|
model.load_state_dict(csd, strict=False) |
|
if len(ckpt['model'].names) == classes: |
|
model.names = ckpt['model'].names |
|
if not verbose: |
|
LOGGER.setLevel(logging.INFO) |
|
return model.to(device) |
|
|
|
except Exception as e: |
|
help_url = 'https://github.com/ultralytics/yolov5/issues/36' |
|
s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.' |
|
raise Exception(s) from e |
|
|
|
|
|
def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None): |
|
|
|
return _create(path, autoshape=autoshape, verbose=_verbose, device=device) |
|
|
|
|
|
if __name__ == '__main__': |
|
import argparse |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
from PIL import Image |
|
|
|
from utils.general import cv2, print_args |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--model', type=str, default='yolo', help='model name') |
|
opt = parser.parse_args() |
|
print_args(vars(opt)) |
|
|
|
|
|
model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) |
|
|
|
|
|
|
|
imgs = [ |
|
'data/images/zidane.jpg', |
|
Path('data/images/zidane.jpg'), |
|
'https://ultralytics.com/images/zidane.jpg', |
|
cv2.imread('data/images/bus.jpg')[:, :, ::-1], |
|
Image.open('data/images/bus.jpg'), |
|
np.zeros((320, 640, 3))] |
|
|
|
|
|
results = model(imgs, size=320) |
|
|
|
|
|
results.print() |
|
results.save() |
|
|