Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- Sunny Unit 1.zip +3 -0
- Sunny Unit 1/_stable_baselines3_version +1 -0
- Sunny Unit 1/data +96 -0
- Sunny Unit 1/policy.optimizer.pth +3 -0
- Sunny Unit 1/policy.pth +3 -0
- Sunny Unit 1/pytorch_variables.pth +3 -0
- Sunny Unit 1/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 250.17 +/- 21.90
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
Sunny Unit 1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b126c2bd04e770c5c3cbfaa1340fca727d980e843b1781599bc0de86dd303e0
|
3 |
+
size 147384
|
Sunny Unit 1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
Sunny Unit 1/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f80f3733520>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f80f37335b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f80f3733640>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f80f37336d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f80f3733760>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f80f37337f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f80f3733880>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f80f3733910>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f80f37339a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f80f3733a30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f80f3733ac0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f80f3733b50>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f80f37341c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1682773105234576513,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHM3xz2IOZM9rWsyvcO5O77eE8o8rW+lvQAAAAAAAAAAALJavd/+lj7XBzw+KY41vgNv0zzBc0g6AAAAAAAAAADz9xY+0hdmPrp/Er4vTJS+c1oAvY1iJr0AAAAAAAAAAIBvXz2ucau6vxU3NJG6yS5zvWO5DtGIswAAgD8AAIA/oGKJvkd+Jz+zx/E9PTmTvs7XYr4N3Sk+AAAAAAAAAAAa3S8+wVKavA1Q4zqNC6Y8J48IvhwJgz0AAIA/AACAP3PWlL3sStW7ZzIvPSEaQD2KFwC9wiN+vAAAgD8AAIA/JpODPQqGdzy3qDY+lhBUvvD9pD1iJX69AAAAAAAAAAAarWY9kcKaPbY28T1GfSe+wsWGPaU7GT0AAAAAAAAAAGaZ2z3h8JC6ZxgoOjPhJrTyodO6WpxCuQAAAAAAAIA/M215PvfvBb0CPIY8c2r6uu6dbr57E7y7AACAPwAAgD/2i3W+9/4pP0Z7oj35zpi+wocOvm3S7T0AAAAAAAAAABptbT4RGzS9azrtuUWEpDjVvZy+UnIqOQAAgD8AAIA/GhdJPa9HMj3yQRA+Gn15vrs0tD2PrJA6AAAAAAAAAAAas9I9K/CWP3UsBD6BUbi+BemhPdk2gr0AAAAAAAAAAI1I2j2PvjO6zhKktzWpsbJETUM6CkzCNgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_episode_starts": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
43 |
+
},
|
44 |
+
"_last_original_obs": null,
|
45 |
+
"_episode_num": 0,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -0.015808000000000044,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoBhZMgfIcECUhpRSlIwBbJRNyQGMAXSUR0CZhs4axX4kdX2UKGgGaAloD0MIXaPlQA88ckCUhpRSlGgVTWMBaBZHQJmHsdbPhQ51fZQoaAZoCWgPQwj5SEp6mABxQJSGlFKUaBVNbAFoFkdAmYhZRfnfVXV9lChoBmgJaA9DCEkqU8zBC25AlIaUUpRoFU1NAWgWR0CZis1RceKbdX2UKGgGaAloD0MIGM+goX+EU0CUhpRSlGgVS/RoFkdAmYxpI6KceHV9lChoBmgJaA9DCD+LpUi+4m9AlIaUUpRoFU1QAWgWR0CZjbD8+A3DdX2UKGgGaAloD0MI8RDGT+M9bkCUhpRSlGgVTU8BaBZHQJmNwp1A7gd1fZQoaAZoCWgPQwgc0NIVbCpjQJSGlFKUaBVN6ANoFkdAmY8NKNAC4nV9lChoBmgJaA9DCIDz4sTX9nBAlIaUUpRoFU0WAWgWR0CZkTDyOJcgdX2UKGgGaAloD0MIfo/661V9cECUhpRSlGgVTXsBaBZHQJmReVkc0ch1fZQoaAZoCWgPQwjdJXFWRAtxQJSGlFKUaBVNUAFoFkdAmZQLa7EpAnV9lChoBmgJaA9DCGOzI9V3IE1AlIaUUpRoFUv+aBZHQJmVV9Wp6yB1fZQoaAZoCWgPQwgxCRfyiKxxQJSGlFKUaBVNHwJoFkdAmZXi4Bmwq3V9lChoBmgJaA9DCJ3VAnvMW3BAlIaUUpRoFU1SAWgWR0CZl0daMaS+dX2UKGgGaAloD0MIjbeVXltxckCUhpRSlGgVTQsCaBZHQJmXyVNYbKl1fZQoaAZoCWgPQwhAahMnd71wQJSGlFKUaBVNJAFoFkdAmajmtlqagHV9lChoBmgJaA9DCJVjsrj/pGRAlIaUUpRoFU3oA2gWR0CZqbdhy8zzdX2UKGgGaAloD0MIJbGk3P1/ZUCUhpRSlGgVTegDaBZHQJmqhnbqQil1fZQoaAZoCWgPQwjpnQq4ZxBvQJSGlFKUaBVNngFoFkdAmatp6lchT3V9lChoBmgJaA9DCDqTNlU3fXJAlIaUUpRoFU0KAWgWR0CZrGPrv9cbdX2UKGgGaAloD0MIBYasbnUNcECUhpRSlGgVTT4BaBZHQJmuw5/9YOl1fZQoaAZoCWgPQwhuwVJdQA1tQJSGlFKUaBVNbwFoFkdAma8ERzzVc3V9lChoBmgJaA9DCMwKRbqf7nFAlIaUUpRoFU2dAWgWR0CZrwbbDdgwdX2UKGgGaAloD0MIj1IJTygRcUCUhpRSlGgVTcQBaBZHQJmxXaSLZSN1fZQoaAZoCWgPQwgWURN9fhRxQJSGlFKUaBVN6gFoFkdAmbLrrX18LXV9lChoBmgJaA9DCNKNsKiIcXBAlIaUUpRoFU1RAWgWR0CZsxa9sabXdX2UKGgGaAloD0MIAHSYL+/+cECUhpRSlGgVTUcBaBZHQJmzOCyyD7J1fZQoaAZoCWgPQwg6JLVQMgBxQJSGlFKUaBVNJgFoFkdAmbM/2GqPwXV9lChoBmgJaA9DCPZCAdtBzGxAlIaUUpRoFU0PAWgWR0CZs8hR64UfdX2UKGgGaAloD0MIsi0DzlKUb0CUhpRSlGgVTS0BaBZHQJm1lNg0CRx1fZQoaAZoCWgPQwh8urpjMWxuQJSGlFKUaBVNZAFoFkdAmbXq3y7PIHV9lChoBmgJaA9DCD8cJER5Qm9AlIaUUpRoFU0CA2gWR0CZuLorFwT/dX2UKGgGaAloD0MIL/t1p7tDcECUhpRSlGgVTRQBaBZHQJm5ePxQSBd1fZQoaAZoCWgPQwhz275H/cNvQJSGlFKUaBVNMAFoFkdAmbsPEsJ6Y3V9lChoBmgJaA9DCH8vhQdNjnBAlIaUUpRoFU1zAWgWR0CZu0sxO+IudX2UKGgGaAloD0MI/MdCdEgZcECUhpRSlGgVTUsBaBZHQJm8ibjLjgh1fZQoaAZoCWgPQwg91LZhFKhuQJSGlFKUaBVN7QFoFkdAmb9vJq7AcnV9lChoBmgJaA9DCN4AM9+B2nFAlIaUUpRoFU0mAWgWR0CZwTfICEHudX2UKGgGaAloD0MIo3cq4B75bUCUhpRSlGgVTXQBaBZHQJnCR7x/d691fZQoaAZoCWgPQwj3BfTCHSRvQJSGlFKUaBVNZgFoFkdAmcQT67/XG3V9lChoBmgJaA9DCFe0Oc5t+mtAlIaUUpRoFU18AWgWR0CZxXPDHfdidX2UKGgGaAloD0MIwsJJmr/+cECUhpRSlGgVTU8BaBZHQJnGrKZDzAh1fZQoaAZoCWgPQwiJC0Cj9LhxQJSGlFKUaBVNMgFoFkdAmcmgmJFb3XV9lChoBmgJaA9DCA5MbhTZQm9AlIaUUpRoFU1EAWgWR0CZy0tjTa0ydX2UKGgGaAloD0MI3bOu0XKqbUCUhpRSlGgVTS8BaBZHQJnMCRV6u4h1fZQoaAZoCWgPQwiIEFfOXvtvQJSGlFKUaBVNQwFoFkdAmcy1X/5tWXV9lChoBmgJaA9DCGCRXz9EzW1AlIaUUpRoFU07AWgWR0CZzXCBPKuCdX2UKGgGaAloD0MIWRMLfMXZaUCUhpRSlGgVTQ0CaBZHQJnP0o9cKPZ1fZQoaAZoCWgPQwg3ixcLw1xtQJSGlFKUaBVNGwNoFkdAmc/nL/0dzXV9lChoBmgJaA9DCPESnPrAD3BAlIaUUpRoFU1HAWgWR0CZ0ALpA2Q5dX2UKGgGaAloD0MIvK302uykckCUhpRSlGgVTSMBaBZHQJnQf6Hj6vd1fZQoaAZoCWgPQwiVYkfjUKVYQJSGlFKUaBVN6ANoFkdAmdDHqZ+hG3V9lChoBmgJaA9DCOtWz0lvdnBAlIaUUpRoFU1ZAWgWR0CZ0a+98JD3dX2UKGgGaAloD0MIdsO2RRnfbUCUhpRSlGgVTTQBaBZHQJnSBdB0ITp1fZQoaAZoCWgPQwiGAyFZwIBFQJSGlFKUaBVL8WgWR0CZ0tnyNGVidX2UKGgGaAloD0MI4q/JGjX5ckCUhpRSlGgVTWIBaBZHQJnUJZq20At1fZQoaAZoCWgPQwg3xHjN68xwQJSGlFKUaBVNUQFoFkdAmdQ/QnhKlHV9lChoBmgJaA9DCOBpMuPthWxAlIaUUpRoFU0SAWgWR0CZ5gvC/GlzdX2UKGgGaAloD0MIfEYiNIJNH8CUhpRSlGgVS8VoFkdAmeY8LBsQ/XV9lChoBmgJaA9DCG8sKAyKEXBAlIaUUpRoFU02AWgWR0CZ5rd/rjYJdX2UKGgGaAloD0MImgZF8wCSRECUhpRSlGgVS+VoFkdAmefGr8zhxnV9lChoBmgJaA9DCFk2c0jqwHBAlIaUUpRoFU11AWgWR0CZ6EZX+2mYdX2UKGgGaAloD0MIDKzj+GHXcECUhpRSlGgVTQkBaBZHQJnob+YMOPN1fZQoaAZoCWgPQwgBUTBjCpdsQJSGlFKUaBVNVQFoFkdAmejreuV5bHV9lChoBmgJaA9DCF6CUx9IRG5AlIaUUpRoFU0nAWgWR0CZ6VMdLg4wdX2UKGgGaAloD0MIh1EQPD4Ib0CUhpRSlGgVTTIBaBZHQJnr1wcYIjZ1fZQoaAZoCWgPQwhZhjjWRVJtQJSGlFKUaBVNHAFoFkdAmewCgf2bonV9lChoBmgJaA9DCHKMZI9Ql2BAlIaUUpRoFU3oA2gWR0CZ7HzbeuV5dX2UKGgGaAloD0MIY30DkxtNXkCUhpRSlGgVTegDaBZHQJnsnJFLFn91fZQoaAZoCWgPQwjgY7DiVOpwQJSGlFKUaBVNiAFoFkdAme06hYeT3nV9lChoBmgJaA9DCIZzDTO08m9AlIaUUpRoFU0cAWgWR0CZ7VBciW3SdX2UKGgGaAloD0MIrVEP0ajBckCUhpRSlGgVTRIBaBZHQJnvQ0iyIHl1fZQoaAZoCWgPQwimK9hGfC9xQJSGlFKUaBVNEQFoFkdAmfBL8m8dxXV9lChoBmgJaA9DCFEyObVz3XFAlIaUUpRoFU3YAWgWR0CZ8II91U2ldX2UKGgGaAloD0MI6L6c2a68ckCUhpRSlGgVTVMBaBZHQJnwwyylenh1fZQoaAZoCWgPQwjej9svX9VwQJSGlFKUaBVNHAFoFkdAmfICnUDuB3V9lChoBmgJaA9DCJKTiVvFunJAlIaUUpRoFU02AWgWR0CZ8kioKlYVdX2UKGgGaAloD0MI5pE/GPhVbUCUhpRSlGgVTTwBaBZHQJnywG7jDKp1fZQoaAZoCWgPQwglXTP5ZmBxQJSGlFKUaBVNIQFoFkdAmfLOK4x1xXV9lChoBmgJaA9DCAjlfRzNnnFAlIaUUpRoFU0LAWgWR0CZ9SmBe5WjdX2UKGgGaAloD0MIzF1LyAc7cUCUhpRSlGgVTR8BaBZHQJn1zLNfPX11fZQoaAZoCWgPQwgH6pRHtx9yQJSGlFKUaBVNHQFoFkdAmfbK0dBBzHV9lChoBmgJaA9DCPWc9L6xOnJAlIaUUpRoFU1UAWgWR0CZ+s127nPndX2UKGgGaAloD0MIQURq2gUUcECUhpRSlGgVTW4BaBZHQJn6zuv2XcB1fZQoaAZoCWgPQwhNol7waYhLQJSGlFKUaBVL6mgWR0CZ+1Emplz2dX2UKGgGaAloD0MIFsCUgQM2QUCUhpRSlGgVS/9oFkdAmfup+c6Nl3V9lChoBmgJaA9DCL1WQncJDnBAlIaUUpRoFU0rAWgWR0CZ/nB91EE1dX2UKGgGaAloD0MITp1Hxf+icECUhpRSlGgVTS8BaBZHQJoAtuFYdQx1fZQoaAZoCWgPQwgKKxVUVNlxQJSGlFKUaBVNLQFoFkdAmgDdU83dbnV9lChoBmgJaA9DCN+oFaav6nFAlIaUUpRoFU1tAWgWR0CaA8Xbuc+adX2UKGgGaAloD0MIKJ1IMNUYRkCUhpRSlGgVS9doFkdAmgTJ2yLQ5XV9lChoBmgJaA9DCArys5ErY3BAlIaUUpRoFU09AWgWR0CaBN/LTx5LdX2UKGgGaAloD0MI5SfVPh1mb0CUhpRSlGgVTS0BaBZHQJoFH29L6DZ1fZQoaAZoCWgPQwhnRj8aziRsQJSGlFKUaBVNRAJoFkdAmgXMoQWepXV9lChoBmgJaA9DCBuC4zIuqXFAlIaUUpRoFU0BAmgWR0CaBdhJAdGRdX2UKGgGaAloD0MIcO1ESUjhbUCUhpRSlGgVTW0BaBZHQJoGDk8zQ/p1fZQoaAZoCWgPQwiBIhYxbFByQJSGlFKUaBVNIAFoFkdAmgeYtlI3BHV9lChoBmgJaA9DCM2spYC0u3BAlIaUUpRoFU1NAWgWR0CaCXOlwcYJdX2UKGgGaAloD0MIk1FlGHdlQ0CUhpRSlGgVS/JoFkdAmgmvAsTWXnV9lChoBmgJaA9DCNI0KJoHQF5AlIaUUpRoFU3oA2gWR0CaClyhBZ6ldWUu"
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 248,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
62 |
+
"dtype": "float32",
|
63 |
+
"_shape": [
|
64 |
+
8
|
65 |
+
],
|
66 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
67 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
68 |
+
"bounded_below": "[False False False False False False False False]",
|
69 |
+
"bounded_above": "[False False False False False False False False]",
|
70 |
+
"_np_random": null
|
71 |
+
},
|
72 |
+
"action_space": {
|
73 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
74 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
75 |
+
"n": 4,
|
76 |
+
"_shape": [],
|
77 |
+
"dtype": "int64",
|
78 |
+
"_np_random": null
|
79 |
+
},
|
80 |
+
"n_envs": 16,
|
81 |
+
"n_steps": 1024,
|
82 |
+
"gamma": 0.999,
|
83 |
+
"gae_lambda": 0.98,
|
84 |
+
"ent_coef": 0.01,
|
85 |
+
"vf_coef": 0.5,
|
86 |
+
"max_grad_norm": 0.5,
|
87 |
+
"batch_size": 64,
|
88 |
+
"n_epochs": 4,
|
89 |
+
"clip_range": {
|
90 |
+
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
92 |
+
},
|
93 |
+
"clip_range_vf": null,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"target_kl": null
|
96 |
+
}
|
Sunny Unit 1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79cdbbe50c6c3eb3a65e1f383012d79e5554ef6b14f400eca8316cf722141abf
|
3 |
+
size 87929
|
Sunny Unit 1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1df921427e8f3a32da79919c45bfb0ee20ea26fc653547cb3ec5439e1458cd1
|
3 |
+
size 43329
|
Sunny Unit 1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
Sunny Unit 1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f80f3733520>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f80f37335b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f80f3733640>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f80f37336d0>", "_build": "<function ActorCriticPolicy._build at 0x7f80f3733760>", "forward": "<function ActorCriticPolicy.forward at 0x7f80f37337f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f80f3733880>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f80f3733910>", "_predict": "<function ActorCriticPolicy._predict at 0x7f80f37339a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f80f3733a30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f80f3733ac0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f80f3733b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f80f37341c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682773105234576513, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHM3xz2IOZM9rWsyvcO5O77eE8o8rW+lvQAAAAAAAAAAALJavd/+lj7XBzw+KY41vgNv0zzBc0g6AAAAAAAAAADz9xY+0hdmPrp/Er4vTJS+c1oAvY1iJr0AAAAAAAAAAIBvXz2ucau6vxU3NJG6yS5zvWO5DtGIswAAgD8AAIA/oGKJvkd+Jz+zx/E9PTmTvs7XYr4N3Sk+AAAAAAAAAAAa3S8+wVKavA1Q4zqNC6Y8J48IvhwJgz0AAIA/AACAP3PWlL3sStW7ZzIvPSEaQD2KFwC9wiN+vAAAgD8AAIA/JpODPQqGdzy3qDY+lhBUvvD9pD1iJX69AAAAAAAAAAAarWY9kcKaPbY28T1GfSe+wsWGPaU7GT0AAAAAAAAAAGaZ2z3h8JC6ZxgoOjPhJrTyodO6WpxCuQAAAAAAAIA/M215PvfvBb0CPIY8c2r6uu6dbr57E7y7AACAPwAAgD/2i3W+9/4pP0Z7oj35zpi+wocOvm3S7T0AAAAAAAAAABptbT4RGzS9azrtuUWEpDjVvZy+UnIqOQAAgD8AAIA/GhdJPa9HMj3yQRA+Gn15vrs0tD2PrJA6AAAAAAAAAAAas9I9K/CWP3UsBD6BUbi+BemhPdk2gr0AAAAAAAAAAI1I2j2PvjO6zhKktzWpsbJETUM6CkzCNgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoBhZMgfIcECUhpRSlIwBbJRNyQGMAXSUR0CZhs4axX4kdX2UKGgGaAloD0MIXaPlQA88ckCUhpRSlGgVTWMBaBZHQJmHsdbPhQ51fZQoaAZoCWgPQwj5SEp6mABxQJSGlFKUaBVNbAFoFkdAmYhZRfnfVXV9lChoBmgJaA9DCEkqU8zBC25AlIaUUpRoFU1NAWgWR0CZis1RceKbdX2UKGgGaAloD0MIGM+goX+EU0CUhpRSlGgVS/RoFkdAmYxpI6KceHV9lChoBmgJaA9DCD+LpUi+4m9AlIaUUpRoFU1QAWgWR0CZjbD8+A3DdX2UKGgGaAloD0MI8RDGT+M9bkCUhpRSlGgVTU8BaBZHQJmNwp1A7gd1fZQoaAZoCWgPQwgc0NIVbCpjQJSGlFKUaBVN6ANoFkdAmY8NKNAC4nV9lChoBmgJaA9DCIDz4sTX9nBAlIaUUpRoFU0WAWgWR0CZkTDyOJcgdX2UKGgGaAloD0MIfo/661V9cECUhpRSlGgVTXsBaBZHQJmReVkc0ch1fZQoaAZoCWgPQwjdJXFWRAtxQJSGlFKUaBVNUAFoFkdAmZQLa7EpAnV9lChoBmgJaA9DCGOzI9V3IE1AlIaUUpRoFUv+aBZHQJmVV9Wp6yB1fZQoaAZoCWgPQwgxCRfyiKxxQJSGlFKUaBVNHwJoFkdAmZXi4Bmwq3V9lChoBmgJaA9DCJ3VAnvMW3BAlIaUUpRoFU1SAWgWR0CZl0daMaS+dX2UKGgGaAloD0MIjbeVXltxckCUhpRSlGgVTQsCaBZHQJmXyVNYbKl1fZQoaAZoCWgPQwhAahMnd71wQJSGlFKUaBVNJAFoFkdAmajmtlqagHV9lChoBmgJaA9DCJVjsrj/pGRAlIaUUpRoFU3oA2gWR0CZqbdhy8zzdX2UKGgGaAloD0MIJbGk3P1/ZUCUhpRSlGgVTegDaBZHQJmqhnbqQil1fZQoaAZoCWgPQwjpnQq4ZxBvQJSGlFKUaBVNngFoFkdAmatp6lchT3V9lChoBmgJaA9DCDqTNlU3fXJAlIaUUpRoFU0KAWgWR0CZrGPrv9cbdX2UKGgGaAloD0MIBYasbnUNcECUhpRSlGgVTT4BaBZHQJmuw5/9YOl1fZQoaAZoCWgPQwhuwVJdQA1tQJSGlFKUaBVNbwFoFkdAma8ERzzVc3V9lChoBmgJaA9DCMwKRbqf7nFAlIaUUpRoFU2dAWgWR0CZrwbbDdgwdX2UKGgGaAloD0MIj1IJTygRcUCUhpRSlGgVTcQBaBZHQJmxXaSLZSN1fZQoaAZoCWgPQwgWURN9fhRxQJSGlFKUaBVN6gFoFkdAmbLrrX18LXV9lChoBmgJaA9DCNKNsKiIcXBAlIaUUpRoFU1RAWgWR0CZsxa9sabXdX2UKGgGaAloD0MIAHSYL+/+cECUhpRSlGgVTUcBaBZHQJmzOCyyD7J1fZQoaAZoCWgPQwg6JLVQMgBxQJSGlFKUaBVNJgFoFkdAmbM/2GqPwXV9lChoBmgJaA9DCPZCAdtBzGxAlIaUUpRoFU0PAWgWR0CZs8hR64UfdX2UKGgGaAloD0MIsi0DzlKUb0CUhpRSlGgVTS0BaBZHQJm1lNg0CRx1fZQoaAZoCWgPQwh8urpjMWxuQJSGlFKUaBVNZAFoFkdAmbXq3y7PIHV9lChoBmgJaA9DCD8cJER5Qm9AlIaUUpRoFU0CA2gWR0CZuLorFwT/dX2UKGgGaAloD0MIL/t1p7tDcECUhpRSlGgVTRQBaBZHQJm5ePxQSBd1fZQoaAZoCWgPQwhz275H/cNvQJSGlFKUaBVNMAFoFkdAmbsPEsJ6Y3V9lChoBmgJaA9DCH8vhQdNjnBAlIaUUpRoFU1zAWgWR0CZu0sxO+IudX2UKGgGaAloD0MI/MdCdEgZcECUhpRSlGgVTUsBaBZHQJm8ibjLjgh1fZQoaAZoCWgPQwg91LZhFKhuQJSGlFKUaBVN7QFoFkdAmb9vJq7AcnV9lChoBmgJaA9DCN4AM9+B2nFAlIaUUpRoFU0mAWgWR0CZwTfICEHudX2UKGgGaAloD0MIo3cq4B75bUCUhpRSlGgVTXQBaBZHQJnCR7x/d691fZQoaAZoCWgPQwj3BfTCHSRvQJSGlFKUaBVNZgFoFkdAmcQT67/XG3V9lChoBmgJaA9DCFe0Oc5t+mtAlIaUUpRoFU18AWgWR0CZxXPDHfdidX2UKGgGaAloD0MIwsJJmr/+cECUhpRSlGgVTU8BaBZHQJnGrKZDzAh1fZQoaAZoCWgPQwiJC0Cj9LhxQJSGlFKUaBVNMgFoFkdAmcmgmJFb3XV9lChoBmgJaA9DCA5MbhTZQm9AlIaUUpRoFU1EAWgWR0CZy0tjTa0ydX2UKGgGaAloD0MI3bOu0XKqbUCUhpRSlGgVTS8BaBZHQJnMCRV6u4h1fZQoaAZoCWgPQwiIEFfOXvtvQJSGlFKUaBVNQwFoFkdAmcy1X/5tWXV9lChoBmgJaA9DCGCRXz9EzW1AlIaUUpRoFU07AWgWR0CZzXCBPKuCdX2UKGgGaAloD0MIWRMLfMXZaUCUhpRSlGgVTQ0CaBZHQJnP0o9cKPZ1fZQoaAZoCWgPQwg3ixcLw1xtQJSGlFKUaBVNGwNoFkdAmc/nL/0dzXV9lChoBmgJaA9DCPESnPrAD3BAlIaUUpRoFU1HAWgWR0CZ0ALpA2Q5dX2UKGgGaAloD0MIvK302uykckCUhpRSlGgVTSMBaBZHQJnQf6Hj6vd1fZQoaAZoCWgPQwiVYkfjUKVYQJSGlFKUaBVN6ANoFkdAmdDHqZ+hG3V9lChoBmgJaA9DCOtWz0lvdnBAlIaUUpRoFU1ZAWgWR0CZ0a+98JD3dX2UKGgGaAloD0MIdsO2RRnfbUCUhpRSlGgVTTQBaBZHQJnSBdB0ITp1fZQoaAZoCWgPQwiGAyFZwIBFQJSGlFKUaBVL8WgWR0CZ0tnyNGVidX2UKGgGaAloD0MI4q/JGjX5ckCUhpRSlGgVTWIBaBZHQJnUJZq20At1fZQoaAZoCWgPQwg3xHjN68xwQJSGlFKUaBVNUQFoFkdAmdQ/QnhKlHV9lChoBmgJaA9DCOBpMuPthWxAlIaUUpRoFU0SAWgWR0CZ5gvC/GlzdX2UKGgGaAloD0MIfEYiNIJNH8CUhpRSlGgVS8VoFkdAmeY8LBsQ/XV9lChoBmgJaA9DCG8sKAyKEXBAlIaUUpRoFU02AWgWR0CZ5rd/rjYJdX2UKGgGaAloD0MImgZF8wCSRECUhpRSlGgVS+VoFkdAmefGr8zhxnV9lChoBmgJaA9DCFk2c0jqwHBAlIaUUpRoFU11AWgWR0CZ6EZX+2mYdX2UKGgGaAloD0MIDKzj+GHXcECUhpRSlGgVTQkBaBZHQJnob+YMOPN1fZQoaAZoCWgPQwgBUTBjCpdsQJSGlFKUaBVNVQFoFkdAmejreuV5bHV9lChoBmgJaA9DCF6CUx9IRG5AlIaUUpRoFU0nAWgWR0CZ6VMdLg4wdX2UKGgGaAloD0MIh1EQPD4Ib0CUhpRSlGgVTTIBaBZHQJnr1wcYIjZ1fZQoaAZoCWgPQwhZhjjWRVJtQJSGlFKUaBVNHAFoFkdAmewCgf2bonV9lChoBmgJaA9DCHKMZI9Ql2BAlIaUUpRoFU3oA2gWR0CZ7HzbeuV5dX2UKGgGaAloD0MIY30DkxtNXkCUhpRSlGgVTegDaBZHQJnsnJFLFn91fZQoaAZoCWgPQwjgY7DiVOpwQJSGlFKUaBVNiAFoFkdAme06hYeT3nV9lChoBmgJaA9DCIZzDTO08m9AlIaUUpRoFU0cAWgWR0CZ7VBciW3SdX2UKGgGaAloD0MIrVEP0ajBckCUhpRSlGgVTRIBaBZHQJnvQ0iyIHl1fZQoaAZoCWgPQwimK9hGfC9xQJSGlFKUaBVNEQFoFkdAmfBL8m8dxXV9lChoBmgJaA9DCFEyObVz3XFAlIaUUpRoFU3YAWgWR0CZ8II91U2ldX2UKGgGaAloD0MI6L6c2a68ckCUhpRSlGgVTVMBaBZHQJnwwyylenh1fZQoaAZoCWgPQwjej9svX9VwQJSGlFKUaBVNHAFoFkdAmfICnUDuB3V9lChoBmgJaA9DCJKTiVvFunJAlIaUUpRoFU02AWgWR0CZ8kioKlYVdX2UKGgGaAloD0MI5pE/GPhVbUCUhpRSlGgVTTwBaBZHQJnywG7jDKp1fZQoaAZoCWgPQwglXTP5ZmBxQJSGlFKUaBVNIQFoFkdAmfLOK4x1xXV9lChoBmgJaA9DCAjlfRzNnnFAlIaUUpRoFU0LAWgWR0CZ9SmBe5WjdX2UKGgGaAloD0MIzF1LyAc7cUCUhpRSlGgVTR8BaBZHQJn1zLNfPX11fZQoaAZoCWgPQwgH6pRHtx9yQJSGlFKUaBVNHQFoFkdAmfbK0dBBzHV9lChoBmgJaA9DCPWc9L6xOnJAlIaUUpRoFU1UAWgWR0CZ+s127nPndX2UKGgGaAloD0MIQURq2gUUcECUhpRSlGgVTW4BaBZHQJn6zuv2XcB1fZQoaAZoCWgPQwhNol7waYhLQJSGlFKUaBVL6mgWR0CZ+1Emplz2dX2UKGgGaAloD0MIFsCUgQM2QUCUhpRSlGgVS/9oFkdAmfup+c6Nl3V9lChoBmgJaA9DCL1WQncJDnBAlIaUUpRoFU0rAWgWR0CZ/nB91EE1dX2UKGgGaAloD0MITp1Hxf+icECUhpRSlGgVTS8BaBZHQJoAtuFYdQx1fZQoaAZoCWgPQwgKKxVUVNlxQJSGlFKUaBVNLQFoFkdAmgDdU83dbnV9lChoBmgJaA9DCN+oFaav6nFAlIaUUpRoFU1tAWgWR0CaA8Xbuc+adX2UKGgGaAloD0MIKJ1IMNUYRkCUhpRSlGgVS9doFkdAmgTJ2yLQ5XV9lChoBmgJaA9DCArys5ErY3BAlIaUUpRoFU09AWgWR0CaBN/LTx5LdX2UKGgGaAloD0MI5SfVPh1mb0CUhpRSlGgVTS0BaBZHQJoFH29L6DZ1fZQoaAZoCWgPQwhnRj8aziRsQJSGlFKUaBVNRAJoFkdAmgXMoQWepXV9lChoBmgJaA9DCBuC4zIuqXFAlIaUUpRoFU0BAmgWR0CaBdhJAdGRdX2UKGgGaAloD0MIcO1ESUjhbUCUhpRSlGgVTW0BaBZHQJoGDk8zQ/p1fZQoaAZoCWgPQwiBIhYxbFByQJSGlFKUaBVNIAFoFkdAmgeYtlI3BHV9lChoBmgJaA9DCM2spYC0u3BAlIaUUpRoFU1NAWgWR0CaCXOlwcYJdX2UKGgGaAloD0MIk1FlGHdlQ0CUhpRSlGgVS/JoFkdAmgmvAsTWXnV9lChoBmgJaA9DCNI0KJoHQF5AlIaUUpRoFU3oA2gWR0CaClyhBZ6ldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (239 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 250.16941784400007, "std_reward": 21.89647794096559, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-29T13:23:28.312478"}
|