Update README.md
Browse files
README.md
CHANGED
@@ -14,11 +14,143 @@ datasets:
|
|
14 |
pipeline_tag: text-generation
|
15 |
---
|
16 |
|
17 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
- **Developed by:** Studeni
|
20 |
-
- **License:** apache-2.0
|
21 |
-
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
|
22 |
|
23 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
24 |
|
|
|
14 |
pipeline_tag: text-generation
|
15 |
---
|
16 |
|
17 |
+
# Llama 3 8B Robot Instruction Model (4-bit)
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
This model is a fine-tuned version of Llama 3 8B, optimized with Unsloth and quantized into 4-bit.
|
22 |
+
It is designed to convert casual user input text into function calls for controlling industrial robots.
|
23 |
+
The aim is to lower the barrier for individuals who do not have programming skills to control robots using simple text instructions.
|
24 |
+
|
25 |
+
## Model Details
|
26 |
+
- **Model ID:** Studeni/llama-3-8b-bnb-4bit-robot-instruct
|
27 |
+
- **Architecture:** Llama 3 8B
|
28 |
+
- **Quantization:** 4-bit
|
29 |
+
- **Framework:** Transformers, Peft, Unsloth
|
30 |
+
|
31 |
+
## Usage
|
32 |
+
|
33 |
+
### Using Unsloth Library
|
34 |
+
|
35 |
+
```python
|
36 |
+
import json
|
37 |
+
from datasets import load_dataset
|
38 |
+
from unsloth import FastLanguageModel
|
39 |
+
|
40 |
+
# Dataset
|
41 |
+
repo_id = "Studeni/robot-instructions"
|
42 |
+
dataset = load_dataset(repo_id, split="test")
|
43 |
+
test_input = dataset[0]["input"]
|
44 |
+
test_output = dataset[0]["output"]
|
45 |
+
print(f"User input: {test_input}\nGround truth: {test_output}")
|
46 |
+
|
47 |
+
# Prompt
|
48 |
+
robot_instruct_prompt = """
|
49 |
+
### Instruction:
|
50 |
+
Transform input into list of function calls for controlling industrial robots.
|
51 |
+
|
52 |
+
### Input:
|
53 |
+
{}
|
54 |
+
|
55 |
+
### Response:
|
56 |
+
{}
|
57 |
+
"""
|
58 |
+
|
59 |
+
# Model Parameters
|
60 |
+
lora_id = "Studeni/llama-3-8b-bnb-4bit-robot-instruct"
|
61 |
+
max_seq_length = 2048
|
62 |
+
dtype = None # Auto-detection. Use Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
63 |
+
load_in_4bit = True
|
64 |
+
|
65 |
+
# Load the model and tokenizer
|
66 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
67 |
+
model_name=lora_id,
|
68 |
+
max_seq_length=max_seq_length,
|
69 |
+
dtype=dtype,
|
70 |
+
load_in_4bit=load_in_4bit,
|
71 |
+
)
|
72 |
+
FastLanguageModel.for_inference(model)
|
73 |
+
|
74 |
+
# Tokenize input text
|
75 |
+
inputs = tokenizer(
|
76 |
+
[robot_instruct_prompt.format(test_input, "")],
|
77 |
+
return_tensors="pt",
|
78 |
+
).to("cuda")
|
79 |
+
|
80 |
+
# Run generation
|
81 |
+
outputs = model.generate(**inputs, max_new_tokens=64, use_cache=True)
|
82 |
+
text_output = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
83 |
+
|
84 |
+
# Extracting function call and converting to json
|
85 |
+
function_call = text_output[0].split("### Response:")[-1].strip()
|
86 |
+
function_call = json.loads(function_call)
|
87 |
+
for f in function_call:
|
88 |
+
print(f"Function to call: {f['function']}")
|
89 |
+
print(f"Input parameters: {f['kwargs']}")
|
90 |
+
```
|
91 |
+
|
92 |
+
### Using Transformers and Peft
|
93 |
+
```python
|
94 |
+
import json
|
95 |
+
from datasets import load_dataset
|
96 |
+
from peft import AutoPeftModelForCausalLM
|
97 |
+
from transformers import AutoTokenizer
|
98 |
+
|
99 |
+
# Dataset
|
100 |
+
repo_id = "Studeni/robot-instructions"
|
101 |
+
dataset = load_dataset(repo_id, split="test")
|
102 |
+
test_input = dataset[0]["input"]
|
103 |
+
test_output = dataset[0]["output"]
|
104 |
+
print(f"User input: {test_input}\nGround truth: {test_output}")
|
105 |
+
|
106 |
+
# Prompt
|
107 |
+
robot_instruct_prompt = """
|
108 |
+
### Instruction:
|
109 |
+
Transform input into list of function calls for controlling industrial robots.
|
110 |
+
|
111 |
+
### Input:
|
112 |
+
{}
|
113 |
+
|
114 |
+
### Response:
|
115 |
+
{}
|
116 |
+
"""
|
117 |
+
|
118 |
+
# Model Parameters
|
119 |
+
lora_id = "Studeni/llama-3-8b-bnb-4bit-robot-instruct"
|
120 |
+
load_in_4bit = True
|
121 |
+
|
122 |
+
# Load model and tokenizer
|
123 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
124 |
+
pretrained_model_name_or_path=lora_id,
|
125 |
+
load_in_4bit=load_in_4bit,
|
126 |
+
)
|
127 |
+
tokenizer = AutoTokenizer.from_pretrained(lora_id)
|
128 |
+
|
129 |
+
# Tokenize input text
|
130 |
+
inputs = tokenizer(
|
131 |
+
[robot_instruct_prompt.format(test_input, "")],
|
132 |
+
return_tensors="pt",
|
133 |
+
).to("cuda")
|
134 |
+
|
135 |
+
# Run generation
|
136 |
+
outputs = model.generate(**inputs, max_new_tokens=256, use_cache=True)
|
137 |
+
text_output = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
138 |
+
|
139 |
+
# Extracting function call and converting to json
|
140 |
+
function_call = text_output[0].split("### Response:")[-1].strip()
|
141 |
+
function_call = json.loads(function_call)
|
142 |
+
for f in function_call:
|
143 |
+
print(f"Function to call: {f['function']}")
|
144 |
+
print(f"Input parameters: {f['kwargs']}")
|
145 |
+
|
146 |
+
```
|
147 |
+
|
148 |
+
## Limitations and Future Work 🚨
|
149 |
+
This model is currently a work in progress and supports only three basic functions: `move_tcp`, `move_joint`, and `get_joint_values`.
|
150 |
+
Future iterations will include a more comprehensive dataset with more complex commands and capabilities, better human-labeled data, and improved performance metrics.
|
151 |
+
|
152 |
+
|
153 |
|
|
|
|
|
|
|
154 |
|
155 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
156 |
|