File size: 7,484 Bytes
b818573 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import data
import torch
from models import imagebind_model
from models.imagebind_model import ModalityType
import torch.nn as nn
from imagen_pytorch import ImagenTrainer
from imagen_pytorch import Unet3D, ElucidatedImagen, ImagenTrainer
from extract.getim import load_image
import torch.optim as optim
import os
from torchvision import transforms
from image2vidimg import cobtwoten, cobtwoten256
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
device = torch.device("cuda")
#import matplotlib.pyplot as plt
#import torch.nn.functional as F
#import cv2
torch.cuda.empty_cache()
transform = transforms.Compose([
transforms.ToTensor(), # 将numpy数组或PIL.Image读的图片转换成(C,H, W)的Tensor格式且/255归一化到[0,1.0]之间
]) # 来自ImageNet的mean和variance
unloader = transforms.ToPILImage()
# def imshow(tensor, title=None):
#
# tensor=tensor.permute(1,2,0)
# print(tensor.shape)
# cv2.imshow('image:', tensor.cpu().numpy())
# # 防止图片关闭
# cv2.waitKey(0)
# # plt.imshow(img_pil)
# # if title is not None:
# # plt.title(title)
# # plt.pause(0.001) # pause a bit so that plots are updated
def imagebind_out(audio_paths,model):
# Load data
inputs = {
ModalityType.AUDIO: data.load_and_transform_audio_data(audio_paths, device),
}
with torch.no_grad():
embeddings = model(inputs)
return embeddings
class encode_audio(nn.Module):
def __init__(self):
super().__init__()
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# self.link1=nn.Linear(1024,768)
self.link2=nn.Linear(1024,343)
# self.link3=nn.Linear(1024,768)
def forward(self,embeddings):
l1=embeddings
l2=self.link2(embeddings)
# l3=self.link3(embeddings)
l3=torch.matmul(l2.transpose(1,2),l1)
return torch.cat([l1,l3],dim=1)
# os.listdir()方法获取文件夹名字,返回数组
def getAllFiles(targetDir):
listFiles = os.listdir(targetDir)
return listFiles
# unet for imagen
unet1 = Unet3D(max_text_len=344,text_embed_dim=1024,dim = 64, dim_mults = (1, 2, 4, 8)).to(device)
unet2 = Unet3D(max_text_len=344,text_embed_dim=1024,dim = 128, dim_mults = (1, 2, 4, 8)).to(device)
# unet3 = Unet3D(dim = 256, dim_mults = (1, 2, 4, 8)).cuda()
#unet1 = NullUnet() # add a placeholder "null" unet for the base unet
imagen = ElucidatedImagen(
text_embed_dim=1024,
unets = (unet1, unet2),
image_sizes = (64, 128),
random_crop_sizes = (None, 64),
temporal_downsample_factor = (2, 1), # in this example, the first unet would receive the video temporally downsampled by 2x
num_sample_steps = 10,
cond_drop_prob = 0.1,
sigma_min = 0.002, # min noise level
sigma_max = (80, 160), # max noise level, double the max noise level for upsampler
sigma_data = 0.5, # standard deviation of data distribution
rho = 7, # controls the sampling schedule
P_mean = -1.2, # mean of log-normal distribution from which noise is drawn for training
P_std = 1.2, # standard deviation of log-normal distribution from which noise is drawn for training
S_churn = 80, # parameters for stochastic sampling - depends on dataset, Table 5 in apper
S_tmin = 0.05,
S_tmax = 50,
S_noise = 1.003,
).to(device)
trainer = ImagenTrainer(imagen)
# trainer.to(device)
# trainer.load("./checkpoint.pt")
trainer = trainer.to(device)
# Instantiate model
# device_ids = [0, 1]
model_imageb = imagebind_model.imagebind_huge(pretrained=True)
model_imageb=model_imageb.to(device)
model_imageb.eval()
# model_imageb=model_imageb.cuda(device=device_ids)
# model_imageb.to(device)
epo=31
p=1
files = getAllFiles("./extract/audio")
outloss=0
model1=(encode_audio()).to(device)
# model1.load_state_dict(torch.load("wlc.pt").state_dict())
optimizer = optim.Adam(model1.parameters(), lr=1e-5,
betas=(0.9, 0.999), eps=1e-08, weight_decay=0., amsgrad=True)
# model1.eval()
model1.train()
torch.cuda.empty_cache()
for k in range(epo):
for nm in range(0, len(files) + 1 - p, p):
#for i in (1, 2):
file_ext0 = os.path.splitext(files[nm])
front0, ext0 = file_ext0
audio_pat=[]
audio_pat.append("./extract/audio/" + str(front0) + ".wav")
# fcontents = load_image("./extract/image/0.jpg", transform=None, shape=[256, 128])
fcontent = cobtwoten("./extract/image/" + str(front0) + ".jpg")
# print(fcontent.shape)
#fcontent = load_image("./extract/image/" + str(front0) + ".jpg", transform, shape=[256, 256])
for ni in range(1,p):
file_ext = os.path.splitext(files[nm+ni])
front, ext = file_ext
# content = load_image("./extract/image/" + str(front) + ".jpg", transform, shape=[256, 256])
content = cobtwoten("./extract/image/" + str(front) + ".jpg")
fcontent = torch.cat((fcontent, content), -5)
audio_pat.append("./extract/audio/" + str(front) + ".wav")
# imageb=torch.LongTensor(imageb_out["audio"])
imageb_out = imagebind_out(audio_pat,model_imageb)
fmusic = model1(imageb_out["audio"].unsqueeze(1))#(5,1,1024)->(5,344,1024)
# fmusic = model1(imageb_out["audio"].unsqueeze(1).cuda())#(5,1,1024)->(5,344,1024)
# print(fmusic)
# print(fmusic.shape)
fmusic=fmusic.to(device)
fcontent=fcontent.to(device)
loss = trainer(fcontent, text_embeds=fmusic, unet_number = 2,ignore_time = False, max_batch_size = p)
trainer.update(unet_number = 2)
optimizer.step()
# print(optimizer.state)
optimizer.zero_grad()
print(loss)
outloss=outloss+loss
#print("unet"+str(i)+" "+str(loss))
outloss=outloss
print("epoch"+str(k)+" "+" loss: "+str(outloss))
outloss=0
if k % 3 == 2:
torch.save(model1, "wlc.pt")
trainer.save('./checkpoint.pt')
# text_list=["A dog.", "A car", "A bird"]
# image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
#
#
#
#
# print(
# "Vision x Text: ",
# torch.softmax(embeddings[ModalityType.VISION] @ embeddings[ModalityType.TEXT].T, dim=-1),
# )
# print(
# "Audio x Text: ",
# torch.softmax(embeddings[ModalityType.AUDIO] @ embeddings[ModalityType.TEXT].T, dim=-1),
# )
# print(
# "Vision x Audio: ",
# torch.softmax(embeddings[ModalityType.VISION] @ embeddings[ModalityType.AUDIO].T, dim=-1),
# )
#
#
#
# print(embeddings['audio'].shape)
# print(embeddings[ModalityType.AUDIO].shape)
# print(embeddings[ModalityType.VISION].shape)
# Expected output:
#
# Vision x Text:
# tensor([[9.9761e-01, 2.3694e-03, 1.8612e-05],
# [3.3836e-05, 9.9994e-01, 2.4118e-05],
# [4.7997e-05, 1.3496e-02, 9.8646e-01]])
#
# Audio x Text:
# tensor([[1., 0., 0.],
# [0., 1., 0.],
# [0., 0., 1.]])
#
# Vision x Audio:
# tensor([[0.8070, 0.1088, 0.0842],
# [0.1036, 0.7884, 0.1079],
# [0.0018, 0.0022, 0.9960]]) |