Commit
·
98088db
1
Parent(s):
84765f8
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- xtreme_s
|
7 |
+
metrics:
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: xtreme_s_w2v2_t5lephone-small_minds14.en-US
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# xtreme_s_w2v2_t5lephone-small_minds14.en-US
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the xtreme_s dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 1.5203
|
23 |
+
- F1: 0.7526
|
24 |
+
- Accuracy: 0.7518
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 0.0003
|
44 |
+
- train_batch_size: 2
|
45 |
+
- eval_batch_size: 8
|
46 |
+
- seed: 42
|
47 |
+
- distributed_type: multi-GPU
|
48 |
+
- num_devices: 2
|
49 |
+
- gradient_accumulation_steps: 8
|
50 |
+
- total_train_batch_size: 32
|
51 |
+
- total_eval_batch_size: 16
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: linear
|
54 |
+
- lr_scheduler_warmup_steps: 100
|
55 |
+
- num_epochs: 150.0
|
56 |
+
- mixed_precision_training: Native AMP
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
|
61 |
+
|:-------------:|:------:|:----:|:---------------:|:------:|:--------:|
|
62 |
+
| 2.589 | 3.95 | 20 | 2.6401 | 0.0108 | 0.0816 |
|
63 |
+
| 2.5223 | 7.95 | 40 | 2.6493 | 0.0339 | 0.0816 |
|
64 |
+
| 2.5085 | 11.95 | 60 | 2.6236 | 0.0539 | 0.1028 |
|
65 |
+
| 2.1252 | 15.95 | 80 | 2.5006 | 0.1458 | 0.1667 |
|
66 |
+
| 1.3711 | 19.95 | 100 | 2.2712 | 0.2344 | 0.2837 |
|
67 |
+
| 1.5092 | 23.95 | 120 | 2.0599 | 0.3631 | 0.3936 |
|
68 |
+
| 0.4962 | 27.95 | 140 | 1.8475 | 0.4881 | 0.4894 |
|
69 |
+
| 0.4169 | 31.95 | 160 | 1.8262 | 0.5358 | 0.5142 |
|
70 |
+
| 0.1579 | 35.95 | 180 | 1.6481 | 0.5967 | 0.6028 |
|
71 |
+
| 0.0927 | 39.95 | 200 | 1.4470 | 0.6748 | 0.6560 |
|
72 |
+
| 0.1363 | 43.95 | 220 | 1.2725 | 0.6836 | 0.6879 |
|
73 |
+
| 0.1324 | 47.95 | 240 | 1.4330 | 0.6653 | 0.6702 |
|
74 |
+
| 0.0294 | 51.95 | 260 | 1.2978 | 0.7079 | 0.7163 |
|
75 |
+
| 0.0326 | 55.95 | 280 | 1.3869 | 0.6823 | 0.6879 |
|
76 |
+
| 0.0444 | 59.95 | 300 | 1.5764 | 0.7051 | 0.6986 |
|
77 |
+
| 0.0527 | 63.95 | 320 | 2.2013 | 0.5899 | 0.5851 |
|
78 |
+
| 0.1542 | 67.95 | 340 | 1.5203 | 0.7053 | 0.6986 |
|
79 |
+
| 0.0127 | 71.95 | 360 | 1.7149 | 0.7105 | 0.7128 |
|
80 |
+
| 0.0105 | 75.95 | 380 | 1.2471 | 0.7853 | 0.7837 |
|
81 |
+
| 0.009 | 79.95 | 400 | 1.5720 | 0.7065 | 0.7057 |
|
82 |
+
| 0.0081 | 83.95 | 420 | 1.9395 | 0.6656 | 0.6702 |
|
83 |
+
| 0.2345 | 87.95 | 440 | 1.5704 | 0.7408 | 0.7411 |
|
84 |
+
| 0.0076 | 91.95 | 460 | 1.4706 | 0.7554 | 0.7589 |
|
85 |
+
| 0.0064 | 95.95 | 480 | 1.5746 | 0.7491 | 0.7518 |
|
86 |
+
| 0.3105 | 99.95 | 500 | 1.6824 | 0.7273 | 0.7376 |
|
87 |
+
| 0.0058 | 103.95 | 520 | 1.3799 | 0.7474 | 0.7624 |
|
88 |
+
| 0.0055 | 107.95 | 540 | 1.4086 | 0.7350 | 0.7518 |
|
89 |
+
| 0.0051 | 111.95 | 560 | 1.2832 | 0.7874 | 0.7979 |
|
90 |
+
| 0.0052 | 115.95 | 580 | 1.3474 | 0.7752 | 0.7801 |
|
91 |
+
| 0.0046 | 119.95 | 600 | 1.6125 | 0.7451 | 0.7482 |
|
92 |
+
| 0.0044 | 123.95 | 620 | 1.5927 | 0.7486 | 0.7518 |
|
93 |
+
| 0.0044 | 127.95 | 640 | 1.5551 | 0.7487 | 0.7518 |
|
94 |
+
| 0.0041 | 131.95 | 660 | 1.5117 | 0.7631 | 0.7660 |
|
95 |
+
| 0.0041 | 135.95 | 680 | 1.5210 | 0.7577 | 0.7624 |
|
96 |
+
| 0.0041 | 139.95 | 700 | 1.5145 | 0.7655 | 0.7660 |
|
97 |
+
| 0.004 | 143.95 | 720 | 1.5053 | 0.7665 | 0.7660 |
|
98 |
+
| 0.004 | 147.95 | 740 | 1.5203 | 0.7526 | 0.7518 |
|
99 |
+
|
100 |
+
|
101 |
+
### Framework versions
|
102 |
+
|
103 |
+
- Transformers 4.18.0
|
104 |
+
- Pytorch 1.11.0+cu113
|
105 |
+
- Datasets 2.1.0
|
106 |
+
- Tokenizers 0.12.1
|