--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - timit_asr metrics: - wer model-index: - name: timit-xls-r-300m results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: timit_asr type: timit_asr config: clean split: None args: clean metrics: - name: Wer type: wer value: 0.2466404796361381 --- # timit-xls-r-300m This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the timit_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.4457 - Wer: 0.2466 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.0049 | 1.72 | 500 | 1.9735 | 1.0655 | | 1.033 | 3.45 | 1000 | 0.6172 | 0.5115 | | 0.4499 | 5.17 | 1500 | 0.5231 | 0.4395 | | 0.2551 | 6.9 | 2000 | 0.4768 | 0.3772 | | 0.1724 | 8.62 | 2500 | 0.4699 | 0.3626 | | 0.133 | 10.34 | 3000 | 0.4346 | 0.3329 | | 0.1082 | 12.07 | 3500 | 0.4479 | 0.3163 | | 0.0886 | 13.79 | 4000 | 0.4393 | 0.3167 | | 0.0766 | 15.52 | 4500 | 0.4920 | 0.3100 | | 0.0637 | 17.24 | 5000 | 0.4510 | 0.3013 | | 0.0607 | 18.97 | 5500 | 0.4284 | 0.2808 | | 0.0495 | 20.69 | 6000 | 0.4270 | 0.2820 | | 0.0479 | 22.41 | 6500 | 0.4294 | 0.2852 | | 0.0444 | 24.14 | 7000 | 0.4456 | 0.2816 | | 0.0378 | 25.86 | 7500 | 0.4236 | 0.2763 | | 0.0325 | 27.59 | 8000 | 0.4365 | 0.2849 | | 0.031 | 29.31 | 8500 | 0.4482 | 0.2862 | | 0.0285 | 31.03 | 9000 | 0.4388 | 0.2691 | | 0.0252 | 32.76 | 9500 | 0.4253 | 0.2692 | | 0.0229 | 34.48 | 10000 | 0.4598 | 0.2641 | | 0.0223 | 36.21 | 10500 | 0.4462 | 0.2533 | | 0.0188 | 37.93 | 11000 | 0.4350 | 0.2673 | | 0.0163 | 39.66 | 11500 | 0.4460 | 0.2608 | | 0.0167 | 41.38 | 12000 | 0.4441 | 0.2683 | | 0.0138 | 43.1 | 12500 | 0.4290 | 0.2528 | | 0.0127 | 44.83 | 13000 | 0.4360 | 0.2508 | | 0.0124 | 46.55 | 13500 | 0.4406 | 0.2511 | | 0.0107 | 48.28 | 14000 | 0.4482 | 0.2477 | | 0.0108 | 50.0 | 14500 | 0.4457 | 0.2466 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.0.1+cu117 - Datasets 2.18.0 - Tokenizers 0.15.2