SpartanLondoner commited on
Commit
33db7a2
·
1 Parent(s): 46e4173

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 271.32 +/- 17.36
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 281.30 +/- 23.04
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6e12c97be0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6e12c97c70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6e12c97d00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6e12c97d90>", "_build": "<function ActorCriticPolicy._build at 0x7f6e12c97e20>", "forward": "<function ActorCriticPolicy.forward at 0x7f6e12c97eb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6e12c97f40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6e12ca8040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6e12ca80d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6e12ca8160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6e12ca81f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6e12ca8280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6e13c6ea00>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 6000640, "_total_timesteps": 6000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696957803686069841, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALrWBb4UAvy6/leFvN8FVz0T4fU8g/urPQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00010666666666669933, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIBr6YVqN+MAWyUS/OMAXSUR0DK9r7DAJswdX2UKGgGR0BvjzIaLn9vaAdL1mgIR0DK9u5ItlI3dX2UKGgGR0BxoRxNqQA/aAdL1mgIR0DK+A+waBI4dX2UKGgGR0By5CJP69CeaAdL02gIR0DK+EisfaHsdX2UKGgGR0BwiLWI42jxaAdL4WgIR0DK+IWwJPZadX2UKGgGR0Bwz4lVtGd7aAdLvWgIR0DK+LdnTRYzdX2UKGgGR0BujpLoOhCdaAdL1mgIR0DK+PFQhwERdX2UKGgGR0Bxs0DfWMCLaAdL4mgIR0DK+S2us90SdX2UKGgGR0BxSqkgwGnoaAdLymgIR0DK+WT0J4SpdX2UKGgGR0Bt/wK0D2alaAdLyGgIR0DK+Yg6XBxhdX2UKGgGR0ByKSdDpkf+aAdL2GgIR0DK+a9E1EVndX2UKGgGR0ByxPGcWj46aAdL8GgIR0DK+dqlWOp9dX2UKGgGR0BwtWG5+YtyaAdL0GgIR0DK+qkibDuSdX2UKGgGR0BxaibUgB91aAdLyGgIR0DK+s4nDziCdX2UKGgGR0BxP3i5uqFRaAdL12gIR0DK+vWw5eZ5dX2UKGgGR0B0Y3+aScLCaAdL5WgIR0DK+x3cL0BfdX2UKGgGR0BhzmPkq+ajaAdN6ANoCEdAyvvTe3QUpXV9lChoBkdAb5Phpg1FY2gHS8NoCEdAyvv26jFhonV9lChoBkdAc31xmTTvzGgHS8doCEdAyvzDVLi++XV9lChoBkdAcD9dDIBBA2gHS9JoCEdAyvzpdfLLZHV9lChoBkdAcpfd+XqqwWgHS85oCEdAyv0OXhOxjnV9lChoBkdAclLPO6d1+2gHS+poCEdAyv04tCiRGXV9lChoBkdAcSGJ1JUYK2gHS8VoCEdAyv1bW6shgXV9lChoBkdAcdVzeGfwqmgHS+NoCEdAyv2D2lEZznV9lChoBkdAcfwntv4ub2gHS91oCEdAyv2sjHGS6nV9lChoBkdAcI4vcJtzjmgHS9doCEdAyv3SaLn9vXV9lChoBkdAcd8xwQ176mgHS+9oCEdAyv38crAgxXV9lChoBkdAc6YUB4lhPWgHS9toCEdAyv4jK6FuenV9lChoBkdAcJwx9oexOmgHS8doCEdAyv8jnA6+4HV9lChoBkdAbgNSgoPTX2gHS8ZoCEdAyv9SP2f03HV9lChoBkdAc8Ue5WilBWgHS+9oCEdAyv+RrjYI0XV9lChoBkdAc0h0cfeUIWgHS9loCEdAyv/O+FlCkXV9lChoBkdAb8e8DB/I82gHS9loCEdAywAJRNyo43V9lChoBkdAcfC+bVjI72gHS9RoCEdAywBB07r9l3V9lChoBkdAbYh8Lronr2gHS9xoCEdAywB81y/9HnV9lChoBkdAcT569kBjnWgHS9BoCEdAywCzowmE5HV9lChoBkdAckwKdQO4G2gHS89oCEdAywDqUD+zdHV9lChoBkdAcGjqIacZtWgHS7hoCEdAywG89cry2HV9lChoBkdAcs2jO9nK4mgHS9hoCEdAywHkMwUQCnV9lChoBkdAcYQ9jPOY6WgHS9FoCEdAywIKQo1DSnV9lChoBkdAcKjtFrl/6WgHS9FoCEdAywIwHdGiH3V9lChoBkdAcU3GEf1YhmgHS91oCEdAywJV/xUedXV9lChoBkdAcQMiKziS72gHS85oCEdAywJ5uCPIXHV9lChoBkdAccM8UmD15GgHS+BoCEdAywKhnHvMKXV9lChoBkdAcEY9Net0WGgHS9BoCEdAywLF16mfoXV9lChoBkdAcVrVWS2Yv2gHS89oCEdAywLpzmOlwnV9lChoBkdAcQAoQ4CIUWgHS9toCEdAywMQ9M9KVnV9lChoBkdAc4jZ/kNnXmgHS/1oCEdAywPk6FuejHV9lChoBkdActEdz4k/r2gHS8toCEdAywQLL2YfGXV9lChoBkdAc5iuvllsg2gHS7toCEdAywQr7MPjGXV9lChoBkdAcabOLzf78GgHS+NoCEdAywRUOqebu3V9lChoBkdAcewJzkp7TmgHS89oCEdAywR44NI9T3V9lChoBkdAcz9RVZLZjGgHS8loCEdAywSdsZYPoXV9lChoBkdAcB78PFvQ4WgHS+ZoCEdAywTGEQoTf3V9lChoBkdAcZxOnEVFhGgHS8toCEdAywTpqMWGh3V9lChoBkdAcFFw0waisWgHS85oCEdAywUPaLXL/3V9lChoBkdAcZe3G4qgAmgHS9FoCEdAywXeA08/2XV9lChoBkdAcLQnpjc2zmgHS9poCEdAywYIY0EX+HV9lChoBkdAcZeyR0U472gHS/VoCEdAywZCN0/4ZnV9lChoBkdAc+If29L6DWgHS7loCEdAywZsh4+r2nV9lChoBkfAMnMriEQGwGgHS3xoCEdAywaJ/7zkIXV9lChoBkdAZTIXUpd8iWgHTegDaAhHQMsHjpDE3sJ1fZQoaAZHQHFKJLM9r45oB0vgaAhHQMsHy8Hnln11fZQoaAZHQHD+0TcqOLloB0u7aAhHQMsI16fJ3gV1fZQoaAZHQHCyPg3tKI1oB0u/aAhHQMsI+VDBuXN1fZQoaAZHQHA6lAmiQDFoB0vfaAhHQMsJIf3WWhR1fZQoaAZHQHGo+n/DLr5oB0vaaAhHQMsJSf4ZdfN1fZQoaAZHQHDbIhhYvFpoB0vWaAhHQMsJcGrKeTV1fZQoaAZHQHCfYkZ75VRoB0vNaAhHQMsJlSHuZ1F1fZQoaAZHQHF83kcS5AhoB0u/aAhHQMsJuGNBF/h1fZQoaAZHQHEP5m/WUbFoB0u+aAhHQMsJ2cYqG1x1fZQoaAZHQHIV6FuejEhoB0uyaAhHQMsJ+K8Djip1fZQoaAZHQHKyUqH446xoB0veaAhHQMsKIR51Ng11fZQoaAZHQHNBxHbypaRoB0vlaAhHQMsK8+kgwGp1fZQoaAZHQG5IovrWy1NoB0vOaAhHQMsLGD/2kBV1fZQoaAZHQHGT54jbBXVoB0u0aAhHQMsLOLAxi5N1fZQoaAZHQHFFZTuOS4hoB0u+aAhHQMsLWkfT1Ch1fZQoaAZHQHFKwQlKK51oB0vFaAhHQMsLfY7JW/91fZQoaAZHQHI0BV2icoZoB0vWaAhHQMsLpAsCkoF1fZQoaAZHQHA4MyvcJt1oB0vNaAhHQMsLyiVKPGR1fZQoaAZHQHIocS00FbFoB0vgaAhHQMsL8a5XlsB1fZQoaAZHQHMiExVQyh1oB0vyaAhHQMsMHGa6ST11fZQoaAZHQHF3Z6D5CWxoB0vsaAhHQMsMRgskIHF1fZQoaAZHQHOGkbo8p1BoB0vnaAhHQMsNGxEORT11fZQoaAZHQC5HduYQarFoB0t1aAhHQMsNL4y44Id1fZQoaAZHQHF1dFrl/6RoB0vNaAhHQMsNVQ3PzFx1fZQoaAZHQHC5TzqbBoFoB0viaAhHQMsNfG4Ajpt1fZQoaAZHQEyiep4rz5JoB0teaAhHQMsNjyWiUPh1fZQoaAZHQHLqloxpL29oB0vKaAhHQMsNvuez2OB1fZQoaAZHQHRlF6iTMaFoB0vCaAhHQMsN7VI7Njd1fZQoaAZHQHNNQtz0Yj1oB0uuaAhHQMsOFtUwSJ11fZQoaAZHQHDpS39aUzNoB0viaAhHQMsOSsD4gzR1fZQoaAZHQHI9JXhfjS5oB0vcaAhHQMsOgYR28qZ1fZQoaAZHQHB3X+VC5VhoB0vBaAhHQMsPr4QSSNh1fZQoaAZHQHGZ8VLzwttoB0vIaAhHQMsP5OS4e911fZQoaAZHQHE/olMRHwxoB0vNaAhHQMsQGCDmKZV1fZQoaAZHQG65yyMUAT9oB0vSaAhHQMsQPpwjt5V1fZQoaAZHQHG5MKG+K0loB0u1aAhHQMsQXuVgQYl1fZQoaAZHQHMZAKneiztoB0veaAhHQMsQhPH93r51fZQoaAZHQHBTNw3o9s9oB0vgaAhHQMsQrLvCuU51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 29300, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVGQMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoOooRYdYJgDwZDAdg78R6nWvCqQCMA2luY5SKEKMwNAzzkbqIv2zzk67oYA91jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c5f883aa9e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c5f883aaa70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c5f883aab00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c5f883aab90>", "_build": "<function ActorCriticPolicy._build at 0x7c5f883aac20>", "forward": "<function ActorCriticPolicy.forward at 0x7c5f883aacb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c5f883aad40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c5f883aadd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c5f883aae60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c5f883aaef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c5f883aaf80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c5f883ab010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c5f8852f3c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697295488099131037, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAAXryfxMS7qAhou2P2lTzAtBw9GCh9vQAAgD8AAIA/M/XfPa9SbD+NqHI+QdTzvupUUj5b1es9AAAAAAAAAABN7l0+w5sGP7PwS776MaK+LpXlPXVNmb0AAAAAAAAAALOxiD2kPhc8nmgTvlevYb4KBiu89oZcvQAAAAAAAAAAZr7rPFwPLbpaHh44r1PZMpRyL7udHju3AACAPwAAgD+zVw+9cZemP3rNuL6F3BG/dbjBvCOGJb4AAAAAAAAAAABYEzvphQM9WWSAPTSkfr4TA9k9/oCcvQAAAAAAAAAAAPWxvU+xmz75+4Y+ly5lvh8fTD1sNgI+AAAAAAAAAABNQiU+JGCAP8kHij7HAAy/FtFaPpCUhD0AAAAAAAAAAGa2/DzSOMU8RV40vroilr63e8S9ndmLOwAAAAAAAAAAc0GsPckTcD6lIH++kTC/vifV6b3aQQy8AAAAAAAAAABA6MO9CHaCPzJEub3N6AS/Qg+EvgK5Q7sAAAAAAAAAAGbVkDzlzLc/KguvPn0fLT783Wq86xLROgAAAAAAAAAAAKQPPuvFLz9HS6M94SO+vhm+Ej5W+Gg7AAAAAAAAAADmy1I9PjG2PwvlND8Vs+w50MWYvFcqlT0AAAAAAAAAAJotALy2wgu8LI61utzAHz2lSlG9/iUZuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGOXRsuWbCMAWyUS/mMAXSUR0Cee7E3Kji5dX2UKGgGR0Bzzc6HTI/8aAdL7WgIR0CefAkNWluWdX2UKGgGR0BwgataIN3GaAdLyWgIR0CefCzXz19OdX2UKGgGR0BzThCVrylOaAdLumgIR0CefDX/5tWNdX2UKGgGR0BxHCkDZDiPaAdL1WgIR0CefG77Kq4pdX2UKGgGR0BwD1C5VfeDaAdLzmgIR0CefRX9R77bdX2UKGgGR0Bypz7WNFSbaAdL02gIR0CefU4+r2g4dX2UKGgGR0BxCPLhaTwEaAdLwmgIR0CefZF6iTMadX2UKGgGR0Bwif029+PSaAdL2mgIR0CefZH3Dej3dX2UKGgGR0By91kCmuTzaAdNDAFoCEdAnn2aBiCrcXV9lChoBkdAcrxqo60Y0mgHS8toCEdAnn7fMW43FXV9lChoBkdAbnlc/t6X0GgHS91oCEdAnn7raAWi13V9lChoBkdAcaLsQd0aImgHS85oCEdAnn71Fc6eXnV9lChoBkdAczfG0u14PmgHS+BoCEdAnoBJ3gUDdXV9lChoBkdAcgAfdRBNVWgHS9hoCEdAnoBn0f5k9XV9lChoBkdAcl25gw482mgHS9doCEdAnoCGFWXC0nV9lChoBkdAbeAJFb3XZ2gHS+loCEdAnoFwq/dqL3V9lChoBkdAbmJB+F10T2gHS9ZoCEdAnoF2YjSofnV9lChoBkdAcoUSi/O+qWgHS+JoCEdAnoG7BTGYKXV9lChoBkdAcwV1uBMBZWgHS+RoCEdAnoIHSKFZgXV9lChoBkdAcbvEUTL4e2gHS/5oCEdAnoJIJE6T4nV9lChoBkdAcWUpuMuOCGgHS9hoCEdAnoKWfK6nSHV9lChoBkdAdFkH58BuGmgHS99oCEdAnoMESAYpD3V9lChoBkdAcod8gIQe3mgHS/RoCEdAnoORMWXTmXV9lChoBkdAcVMWd3B55mgHS/toCEdAnoO2LpA2RHV9lChoBkdAcVBGNJe3QWgHS9doCEdAnoQ78ejmCHV9lChoBkdAcUw8DB/I82gHS9hoCEdAnoRNcry1/nV9lChoBkdAcytpJwsGxGgHS9hoCEdAnoRWXw9aEHV9lChoBkdAcjsJK8L8aWgHTSsBaAhHQJ6EY8yN4qx1fZQoaAZHQHFe85OrQw9oB0vnaAhHQJ6F8LThHb11fZQoaAZHQHIwgSeyzHFoB0v5aAhHQJ6Ginm7rcF1fZQoaAZHQHHLtjPOY6ZoB0v2aAhHQJ6GlPRArx11fZQoaAZHQG3PjCP6sQxoB0vOaAhHQJ6HHxe9i+d1fZQoaAZHQHDWi2x6fJ5oB0vpaAhHQJ6HiHtWuHN1fZQoaAZHQHA/o8p1A7hoB0v+aAhHQJ6HybNKRMh1fZQoaAZHQHDS2WQfZEloB0vxaAhHQJ6IVxNqQBB1fZQoaAZHQHNCZZr56+poB0vaaAhHQJ6IiGetjkN1fZQoaAZHQHCinIyTINpoB0vKaAhHQJ6IsyULUkR1fZQoaAZHQHH2Bhx5s0poB00qAWgIR0CeiPmUGFBZdX2UKGgGR0Bw6guqWC2+aAdL3WgIR0CeiVhJiAlOdX2UKGgGR0Bzb6r7wazeaAdNCwFoCEdAnolcMuvll3V9lChoBkdAcpsEDQqqfmgHS8toCEdAnolyvX9R8HV9lChoBkdAc9QBQemvXGgHS8RoCEdAnolvw3HaOHV9lChoBkdAcVq2+PBBRmgHS+xoCEdAnopCO/+Kj3V9lChoBkdAcuN+otL+P2gHTRoBaAhHQJ6LWLP2PDJ1fZQoaAZHQHFt8ewLVnVoB0vNaAhHQJ6LtO32EkB1fZQoaAZHQHHXGvjfek5oB00NAWgIR0CejNpxWDHwdX2UKGgGR0Byty9ytFKDaAdNBgFoCEdAno1ZkK/mDHV9lChoBkdAbh7jGT9sJ2gHS/FoCEdAno3HsLORknV9lChoBkdAclsN3np0OmgHS9FoCEdAno3ytNi6QXV9lChoBkdAb1xbqQiiZmgHS8VoCEdAno4YAbQ1JnV9lChoBkdAcONfJFLFoGgHS/9oCEdAno58VDa4+nV9lChoBkdAcJPC9AX2umgHS8poCEdAno6qqXF98nV9lChoBkdAcJcC66J66mgHS+doCEdAno7JEMLF43V9lChoBkdAczLAUcn3L2gHTQEBaAhHQJ6PItuk1uR1fZQoaAZHQHKbGIXTEzhoB0vfaAhHQJ6PQt16mfp1fZQoaAZHQG8HkJa7mMhoB0veaAhHQJ6PVVBD5TJ1fZQoaAZHQG/H1XFLnLdoB0vgaAhHQJ6PXz8P4Eh1fZQoaAZHQHDvuqzZ6D5oB0vZaAhHQJ6QFalk6Lh1fZQoaAZHQHLIgSWZ7XxoB01wAWgIR0CekLbRF7UodX2UKGgGR0BxsMPNFBppaAdL0WgIR0CekPXWOIZZdX2UKGgGR0BtVnkLhJiBaAdL02gIR0CekVUOuq3mdX2UKGgGR0BwoETsY2sJaAdL2GgIR0Cekn717IDHdX2UKGgGR0BycSLgn+hoaAdL2GgIR0Ceku9ic5KfdX2UKGgGR0BzHhy3kPtlaAdLuWgIR0Cek2I2wV0tdX2UKGgGR0BvcrkELYwqaAdL1GgIR0Cek3prk8zRdX2UKGgGR0BJ2rHU+cH4aAdLsGgIR0Cek68YQ8OkdX2UKGgGR0Bz8odYGMXKaAdL5WgIR0Cek85myxA0dX2UKGgGR0By2ERFqi48aAdL+2gIR0CelDr1uivgdX2UKGgGR0Bxc9cv/R3NaAdLz2gIR0CelEwtrbg1dX2UKGgGR0ByRCiZfD1oaAdL+GgIR0CelLsT37DVdX2UKGgGR0BuH71yvLX+aAdL2mgIR0CelMiMYMvzdX2UKGgGR0BwMvafzz3AaAdL+GgIR0CelOrPt2LYdX2UKGgGR0BzIhLM9r44aAdNCQFoCEdAnpXK7mMfinV9lChoBkdActft6X0GvGgHS/FoCEdAnpYOlGgBcXV9lChoBkdAcOgF8XvYvmgHS/NoCEdAnpa6TSsr/nV9lChoBkdAb/Ii1RceKmgHS+5oCEdAnpbd8E3bVXV9lChoBkdActb1LrX18WgHS+poCEdAnpcl0HQhOnV9lChoBkdAb3sTSLIgeWgHS+RoCEdAnpgrLt/nXHV9lChoBkdAcKqCbMHKOmgHS+ZoCEdAnpipQxesxXV9lChoBkdAcA9DgqEvkGgHS9doCEdAnpizu8brC3V9lChoBkdAcYk29+PRzGgHS99oCEdAnpj9rGipN3V9lChoBkdAcDWAU+LWJGgHS+toCEdAnpmftMPBi3V9lChoBkdAcoAffGdZq2gHS9hoCEdAnpmgCW/rSnV9lChoBkdAckPKrq+rVGgHS9poCEdAnpmcmv4dqHV9lChoBkdAcrkqQA+6iGgHS/VoCEdAnpnCGnGbTnV9lChoBkdAcDaLiMo+fWgHS9NoCEdAnpn7VnVXm3V9lChoBkdAbq8HDaXa8GgHS9NoCEdAnpoTnJT2nXV9lChoBkdAc36fHggow2gHS/hoCEdAnprCLuQZGnV9lChoBkdAcSZrhBJI2GgHS95oCEdAnps0HyEtd3V9lChoBkdActp3WFvhqGgHS75oCEdAnpteRcNYsHV9lChoBkdAcBCJ9iMHbGgHS+NoCEdAnpxu+yquKXV9lChoBkdAcHFd3B55aGgHTQgBaAhHQJ6ch7SiM5x1fZQoaAZHQHCCkvsZ5zJoB0v2aAhHQJ6dOSW7e2x1fZQoaAZHQHJNYKx9oexoB0vSaAhHQJ6d16MR6GB1fZQoaAZHQHOoIexOclRoB0vFaAhHQJ6d12B8QZp1fZQoaAZHQHIfUqMFUyZoB0vVaAhHQJ6d9qmCROl1fZQoaAZHQHB2/vKEFntoB0vTaAhHQJ6e2bQTmGN1fZQoaAZHQHEDxbwBo25oB00MAWgIR0CenuQJHAh0dX2UKGgGR0Bvm+85CF9KaAdL12gIR0CenvJQLux9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 460, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6f38e4f36f40ef05db739610701a219bfedca949a42ba2daae4bea0f989fee37
3
- size 146207
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e690b11d8812914812ac42ed757c7ad6f40b9c2084cb0fa3de1f4ba9d562e2f4
3
+ size 146640
ppo-LunarLander-v2/data CHANGED
@@ -4,57 +4,57 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6e12c97be0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6e12c97c70>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6e12c97d00>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6e12c97d90>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f6e12c97e20>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f6e12c97eb0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6e12c97f40>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6e12ca8040>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f6e12ca80d0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6e12ca8160>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6e12ca81f0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6e12ca8280>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f6e13c6ea00>"
21
  },
22
- "verbose": 0,
23
  "policy_kwargs": {},
24
- "num_timesteps": 6000640,
25
- "_total_timesteps": 6000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1696957803686069841,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALrWBb4UAvy6/leFvN8FVz0T4fU8g/urPQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
- ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.00010666666666669933,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIBr6YVqN+MAWyUS/OMAXSUR0DK9r7DAJswdX2UKGgGR0BvjzIaLn9vaAdL1mgIR0DK9u5ItlI3dX2UKGgGR0BxoRxNqQA/aAdL1mgIR0DK+A+waBI4dX2UKGgGR0By5CJP69CeaAdL02gIR0DK+EisfaHsdX2UKGgGR0BwiLWI42jxaAdL4WgIR0DK+IWwJPZadX2UKGgGR0Bwz4lVtGd7aAdLvWgIR0DK+LdnTRYzdX2UKGgGR0BujpLoOhCdaAdL1mgIR0DK+PFQhwERdX2UKGgGR0Bxs0DfWMCLaAdL4mgIR0DK+S2us90SdX2UKGgGR0BxSqkgwGnoaAdLymgIR0DK+WT0J4SpdX2UKGgGR0Bt/wK0D2alaAdLyGgIR0DK+Yg6XBxhdX2UKGgGR0ByKSdDpkf+aAdL2GgIR0DK+a9E1EVndX2UKGgGR0ByxPGcWj46aAdL8GgIR0DK+dqlWOp9dX2UKGgGR0BwtWG5+YtyaAdL0GgIR0DK+qkibDuSdX2UKGgGR0BxaibUgB91aAdLyGgIR0DK+s4nDziCdX2UKGgGR0BxP3i5uqFRaAdL12gIR0DK+vWw5eZ5dX2UKGgGR0B0Y3+aScLCaAdL5WgIR0DK+x3cL0BfdX2UKGgGR0BhzmPkq+ajaAdN6ANoCEdAyvvTe3QUpXV9lChoBkdAb5Phpg1FY2gHS8NoCEdAyvv26jFhonV9lChoBkdAc31xmTTvzGgHS8doCEdAyvzDVLi++XV9lChoBkdAcD9dDIBBA2gHS9JoCEdAyvzpdfLLZHV9lChoBkdAcpfd+XqqwWgHS85oCEdAyv0OXhOxjnV9lChoBkdAclLPO6d1+2gHS+poCEdAyv04tCiRGXV9lChoBkdAcSGJ1JUYK2gHS8VoCEdAyv1bW6shgXV9lChoBkdAcdVzeGfwqmgHS+NoCEdAyv2D2lEZznV9lChoBkdAcfwntv4ub2gHS91oCEdAyv2sjHGS6nV9lChoBkdAcI4vcJtzjmgHS9doCEdAyv3SaLn9vXV9lChoBkdAcd8xwQ176mgHS+9oCEdAyv38crAgxXV9lChoBkdAc6YUB4lhPWgHS9toCEdAyv4jK6FuenV9lChoBkdAcJwx9oexOmgHS8doCEdAyv8jnA6+4HV9lChoBkdAbgNSgoPTX2gHS8ZoCEdAyv9SP2f03HV9lChoBkdAc8Ue5WilBWgHS+9oCEdAyv+RrjYI0XV9lChoBkdAc0h0cfeUIWgHS9loCEdAyv/O+FlCkXV9lChoBkdAb8e8DB/I82gHS9loCEdAywAJRNyo43V9lChoBkdAcfC+bVjI72gHS9RoCEdAywBB07r9l3V9lChoBkdAbYh8Lronr2gHS9xoCEdAywB81y/9HnV9lChoBkdAcT569kBjnWgHS9BoCEdAywCzowmE5HV9lChoBkdAckwKdQO4G2gHS89oCEdAywDqUD+zdHV9lChoBkdAcGjqIacZtWgHS7hoCEdAywG89cry2HV9lChoBkdAcs2jO9nK4mgHS9hoCEdAywHkMwUQCnV9lChoBkdAcYQ9jPOY6WgHS9FoCEdAywIKQo1DSnV9lChoBkdAcKjtFrl/6WgHS9FoCEdAywIwHdGiH3V9lChoBkdAcU3GEf1YhmgHS91oCEdAywJV/xUedXV9lChoBkdAcQMiKziS72gHS85oCEdAywJ5uCPIXHV9lChoBkdAccM8UmD15GgHS+BoCEdAywKhnHvMKXV9lChoBkdAcEY9Net0WGgHS9BoCEdAywLF16mfoXV9lChoBkdAcVrVWS2Yv2gHS89oCEdAywLpzmOlwnV9lChoBkdAcQAoQ4CIUWgHS9toCEdAywMQ9M9KVnV9lChoBkdAc4jZ/kNnXmgHS/1oCEdAywPk6FuejHV9lChoBkdActEdz4k/r2gHS8toCEdAywQLL2YfGXV9lChoBkdAc5iuvllsg2gHS7toCEdAywQr7MPjGXV9lChoBkdAcabOLzf78GgHS+NoCEdAywRUOqebu3V9lChoBkdAcewJzkp7TmgHS89oCEdAywR44NI9T3V9lChoBkdAcz9RVZLZjGgHS8loCEdAywSdsZYPoXV9lChoBkdAcB78PFvQ4WgHS+ZoCEdAywTGEQoTf3V9lChoBkdAcZxOnEVFhGgHS8toCEdAywTpqMWGh3V9lChoBkdAcFFw0waisWgHS85oCEdAywUPaLXL/3V9lChoBkdAcZe3G4qgAmgHS9FoCEdAywXeA08/2XV9lChoBkdAcLQnpjc2zmgHS9poCEdAywYIY0EX+HV9lChoBkdAcZeyR0U472gHS/VoCEdAywZCN0/4ZnV9lChoBkdAc+If29L6DWgHS7loCEdAywZsh4+r2nV9lChoBkfAMnMriEQGwGgHS3xoCEdAywaJ/7zkIXV9lChoBkdAZTIXUpd8iWgHTegDaAhHQMsHjpDE3sJ1fZQoaAZHQHFKJLM9r45oB0vgaAhHQMsHy8Hnln11fZQoaAZHQHD+0TcqOLloB0u7aAhHQMsI16fJ3gV1fZQoaAZHQHCyPg3tKI1oB0u/aAhHQMsI+VDBuXN1fZQoaAZHQHA6lAmiQDFoB0vfaAhHQMsJIf3WWhR1fZQoaAZHQHGo+n/DLr5oB0vaaAhHQMsJSf4ZdfN1fZQoaAZHQHDbIhhYvFpoB0vWaAhHQMsJcGrKeTV1fZQoaAZHQHCfYkZ75VRoB0vNaAhHQMsJlSHuZ1F1fZQoaAZHQHF83kcS5AhoB0u/aAhHQMsJuGNBF/h1fZQoaAZHQHEP5m/WUbFoB0u+aAhHQMsJ2cYqG1x1fZQoaAZHQHIV6FuejEhoB0uyaAhHQMsJ+K8Djip1fZQoaAZHQHKyUqH446xoB0veaAhHQMsKIR51Ng11fZQoaAZHQHNBxHbypaRoB0vlaAhHQMsK8+kgwGp1fZQoaAZHQG5IovrWy1NoB0vOaAhHQMsLGD/2kBV1fZQoaAZHQHGT54jbBXVoB0u0aAhHQMsLOLAxi5N1fZQoaAZHQHFFZTuOS4hoB0u+aAhHQMsLWkfT1Ch1fZQoaAZHQHFKwQlKK51oB0vFaAhHQMsLfY7JW/91fZQoaAZHQHI0BV2icoZoB0vWaAhHQMsLpAsCkoF1fZQoaAZHQHA4MyvcJt1oB0vNaAhHQMsLyiVKPGR1fZQoaAZHQHIocS00FbFoB0vgaAhHQMsL8a5XlsB1fZQoaAZHQHMiExVQyh1oB0vyaAhHQMsMHGa6ST11fZQoaAZHQHF3Z6D5CWxoB0vsaAhHQMsMRgskIHF1fZQoaAZHQHOGkbo8p1BoB0vnaAhHQMsNGxEORT11fZQoaAZHQC5HduYQarFoB0t1aAhHQMsNL4y44Id1fZQoaAZHQHF1dFrl/6RoB0vNaAhHQMsNVQ3PzFx1fZQoaAZHQHC5TzqbBoFoB0viaAhHQMsNfG4Ajpt1fZQoaAZHQEyiep4rz5JoB0teaAhHQMsNjyWiUPh1fZQoaAZHQHLqloxpL29oB0vKaAhHQMsNvuez2OB1fZQoaAZHQHRlF6iTMaFoB0vCaAhHQMsN7VI7Njd1fZQoaAZHQHNNQtz0Yj1oB0uuaAhHQMsOFtUwSJ11fZQoaAZHQHDpS39aUzNoB0viaAhHQMsOSsD4gzR1fZQoaAZHQHI9JXhfjS5oB0vcaAhHQMsOgYR28qZ1fZQoaAZHQHB3X+VC5VhoB0vBaAhHQMsPr4QSSNh1fZQoaAZHQHGZ8VLzwttoB0vIaAhHQMsP5OS4e911fZQoaAZHQHE/olMRHwxoB0vNaAhHQMsQGCDmKZV1fZQoaAZHQG65yyMUAT9oB0vSaAhHQMsQPpwjt5V1fZQoaAZHQHG5MKG+K0loB0u1aAhHQMsQXuVgQYl1fZQoaAZHQHMZAKneiztoB0veaAhHQMsQhPH93r51fZQoaAZHQHBTNw3o9s9oB0vgaAhHQMsQrLvCuU51ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 29300,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
- ":serialized:": "gAWVGQMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoOooRYdYJgDwZDAdg78R6nWvCqQCMA2luY5SKEKMwNAzzkbqIv2zzk67oYA91jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
58
  "dtype": "float32",
59
  "bounded_below": "[ True True True True True True True True]",
60
  "bounded_above": "[ True True True True True True True True]",
@@ -65,7 +65,7 @@
65
  "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
  "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
  "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
- "_np_random": "Generator(PCG64)"
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
@@ -76,11 +76,11 @@
76
  "dtype": "int64",
77
  "_np_random": null
78
  },
79
- "n_envs": 1,
80
  "n_steps": 2048,
81
- "gamma": 0.99,
82
- "gae_lambda": 0.95,
83
- "ent_coef": 0.0,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7c5f883aa9e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c5f883aaa70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c5f883aab00>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c5f883aab90>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7c5f883aac20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7c5f883aacb0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c5f883aad40>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c5f883aadd0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7c5f883aae60>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c5f883aaef0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c5f883aaf80>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c5f883ab010>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7c5f8852f3c0>"
21
  },
22
+ "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 1507328,
25
+ "_total_timesteps": 1500000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1697295488099131037,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAAXryfxMS7qAhou2P2lTzAtBw9GCh9vQAAgD8AAIA/M/XfPa9SbD+NqHI+QdTzvupUUj5b1es9AAAAAAAAAABN7l0+w5sGP7PwS776MaK+LpXlPXVNmb0AAAAAAAAAALOxiD2kPhc8nmgTvlevYb4KBiu89oZcvQAAAAAAAAAAZr7rPFwPLbpaHh44r1PZMpRyL7udHju3AACAPwAAgD+zVw+9cZemP3rNuL6F3BG/dbjBvCOGJb4AAAAAAAAAAABYEzvphQM9WWSAPTSkfr4TA9k9/oCcvQAAAAAAAAAAAPWxvU+xmz75+4Y+ly5lvh8fTD1sNgI+AAAAAAAAAABNQiU+JGCAP8kHij7HAAy/FtFaPpCUhD0AAAAAAAAAAGa2/DzSOMU8RV40vroilr63e8S9ndmLOwAAAAAAAAAAc0GsPckTcD6lIH++kTC/vifV6b3aQQy8AAAAAAAAAABA6MO9CHaCPzJEub3N6AS/Qg+EvgK5Q7sAAAAAAAAAAGbVkDzlzLc/KguvPn0fLT783Wq86xLROgAAAAAAAAAAAKQPPuvFLz9HS6M94SO+vhm+Ej5W+Gg7AAAAAAAAAADmy1I9PjG2PwvlND8Vs+w50MWYvFcqlT0AAAAAAAAAAJotALy2wgu8LI61utzAHz2lSlG9/iUZuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.004885333333333408,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGOXRsuWbCMAWyUS/mMAXSUR0Cee7E3Kji5dX2UKGgGR0Bzzc6HTI/8aAdL7WgIR0CefAkNWluWdX2UKGgGR0BwgataIN3GaAdLyWgIR0CefCzXz19OdX2UKGgGR0BzThCVrylOaAdLumgIR0CefDX/5tWNdX2UKGgGR0BxHCkDZDiPaAdL1WgIR0CefG77Kq4pdX2UKGgGR0BwD1C5VfeDaAdLzmgIR0CefRX9R77bdX2UKGgGR0Bypz7WNFSbaAdL02gIR0CefU4+r2g4dX2UKGgGR0BxCPLhaTwEaAdLwmgIR0CefZF6iTMadX2UKGgGR0Bwif029+PSaAdL2mgIR0CefZH3Dej3dX2UKGgGR0By91kCmuTzaAdNDAFoCEdAnn2aBiCrcXV9lChoBkdAcrxqo60Y0mgHS8toCEdAnn7fMW43FXV9lChoBkdAbnlc/t6X0GgHS91oCEdAnn7raAWi13V9lChoBkdAcaLsQd0aImgHS85oCEdAnn71Fc6eXnV9lChoBkdAczfG0u14PmgHS+BoCEdAnoBJ3gUDdXV9lChoBkdAcgAfdRBNVWgHS9hoCEdAnoBn0f5k9XV9lChoBkdAcl25gw482mgHS9doCEdAnoCGFWXC0nV9lChoBkdAbeAJFb3XZ2gHS+loCEdAnoFwq/dqL3V9lChoBkdAbmJB+F10T2gHS9ZoCEdAnoF2YjSofnV9lChoBkdAcoUSi/O+qWgHS+JoCEdAnoG7BTGYKXV9lChoBkdAcwV1uBMBZWgHS+RoCEdAnoIHSKFZgXV9lChoBkdAcbvEUTL4e2gHS/5oCEdAnoJIJE6T4nV9lChoBkdAcWUpuMuOCGgHS9hoCEdAnoKWfK6nSHV9lChoBkdAdFkH58BuGmgHS99oCEdAnoMESAYpD3V9lChoBkdAcod8gIQe3mgHS/RoCEdAnoORMWXTmXV9lChoBkdAcVMWd3B55mgHS/toCEdAnoO2LpA2RHV9lChoBkdAcVBGNJe3QWgHS9doCEdAnoQ78ejmCHV9lChoBkdAcUw8DB/I82gHS9hoCEdAnoRNcry1/nV9lChoBkdAcytpJwsGxGgHS9hoCEdAnoRWXw9aEHV9lChoBkdAcjsJK8L8aWgHTSsBaAhHQJ6EY8yN4qx1fZQoaAZHQHFe85OrQw9oB0vnaAhHQJ6F8LThHb11fZQoaAZHQHIwgSeyzHFoB0v5aAhHQJ6Ginm7rcF1fZQoaAZHQHHLtjPOY6ZoB0v2aAhHQJ6GlPRArx11fZQoaAZHQG3PjCP6sQxoB0vOaAhHQJ6HHxe9i+d1fZQoaAZHQHDWi2x6fJ5oB0vpaAhHQJ6HiHtWuHN1fZQoaAZHQHA/o8p1A7hoB0v+aAhHQJ6HybNKRMh1fZQoaAZHQHDS2WQfZEloB0vxaAhHQJ6IVxNqQBB1fZQoaAZHQHNCZZr56+poB0vaaAhHQJ6IiGetjkN1fZQoaAZHQHCinIyTINpoB0vKaAhHQJ6IsyULUkR1fZQoaAZHQHH2Bhx5s0poB00qAWgIR0CeiPmUGFBZdX2UKGgGR0Bw6guqWC2+aAdL3WgIR0CeiVhJiAlOdX2UKGgGR0Bzb6r7wazeaAdNCwFoCEdAnolcMuvll3V9lChoBkdAcpsEDQqqfmgHS8toCEdAnolyvX9R8HV9lChoBkdAc9QBQemvXGgHS8RoCEdAnolvw3HaOHV9lChoBkdAcVq2+PBBRmgHS+xoCEdAnopCO/+Kj3V9lChoBkdAcuN+otL+P2gHTRoBaAhHQJ6LWLP2PDJ1fZQoaAZHQHFt8ewLVnVoB0vNaAhHQJ6LtO32EkB1fZQoaAZHQHHXGvjfek5oB00NAWgIR0CejNpxWDHwdX2UKGgGR0Byty9ytFKDaAdNBgFoCEdAno1ZkK/mDHV9lChoBkdAbh7jGT9sJ2gHS/FoCEdAno3HsLORknV9lChoBkdAclsN3np0OmgHS9FoCEdAno3ytNi6QXV9lChoBkdAb1xbqQiiZmgHS8VoCEdAno4YAbQ1JnV9lChoBkdAcONfJFLFoGgHS/9oCEdAno58VDa4+nV9lChoBkdAcJPC9AX2umgHS8poCEdAno6qqXF98nV9lChoBkdAcJcC66J66mgHS+doCEdAno7JEMLF43V9lChoBkdAczLAUcn3L2gHTQEBaAhHQJ6PItuk1uR1fZQoaAZHQHKbGIXTEzhoB0vfaAhHQJ6PQt16mfp1fZQoaAZHQG8HkJa7mMhoB0veaAhHQJ6PVVBD5TJ1fZQoaAZHQG/H1XFLnLdoB0vgaAhHQJ6PXz8P4Eh1fZQoaAZHQHDvuqzZ6D5oB0vZaAhHQJ6QFalk6Lh1fZQoaAZHQHLIgSWZ7XxoB01wAWgIR0CekLbRF7UodX2UKGgGR0BxsMPNFBppaAdL0WgIR0CekPXWOIZZdX2UKGgGR0BtVnkLhJiBaAdL02gIR0CekVUOuq3mdX2UKGgGR0BwoETsY2sJaAdL2GgIR0Cekn717IDHdX2UKGgGR0BycSLgn+hoaAdL2GgIR0Ceku9ic5KfdX2UKGgGR0BzHhy3kPtlaAdLuWgIR0Cek2I2wV0tdX2UKGgGR0BvcrkELYwqaAdL1GgIR0Cek3prk8zRdX2UKGgGR0BJ2rHU+cH4aAdLsGgIR0Cek68YQ8OkdX2UKGgGR0Bz8odYGMXKaAdL5WgIR0Cek85myxA0dX2UKGgGR0By2ERFqi48aAdL+2gIR0CelDr1uivgdX2UKGgGR0Bxc9cv/R3NaAdLz2gIR0CelEwtrbg1dX2UKGgGR0ByRCiZfD1oaAdL+GgIR0CelLsT37DVdX2UKGgGR0BuH71yvLX+aAdL2mgIR0CelMiMYMvzdX2UKGgGR0BwMvafzz3AaAdL+GgIR0CelOrPt2LYdX2UKGgGR0BzIhLM9r44aAdNCQFoCEdAnpXK7mMfinV9lChoBkdActft6X0GvGgHS/FoCEdAnpYOlGgBcXV9lChoBkdAcOgF8XvYvmgHS/NoCEdAnpa6TSsr/nV9lChoBkdAb/Ii1RceKmgHS+5oCEdAnpbd8E3bVXV9lChoBkdActb1LrX18WgHS+poCEdAnpcl0HQhOnV9lChoBkdAb3sTSLIgeWgHS+RoCEdAnpgrLt/nXHV9lChoBkdAcKqCbMHKOmgHS+ZoCEdAnpipQxesxXV9lChoBkdAcA9DgqEvkGgHS9doCEdAnpizu8brC3V9lChoBkdAcYk29+PRzGgHS99oCEdAnpj9rGipN3V9lChoBkdAcDWAU+LWJGgHS+toCEdAnpmftMPBi3V9lChoBkdAcoAffGdZq2gHS9hoCEdAnpmgCW/rSnV9lChoBkdAckPKrq+rVGgHS9poCEdAnpmcmv4dqHV9lChoBkdAcrkqQA+6iGgHS/VoCEdAnpnCGnGbTnV9lChoBkdAcDaLiMo+fWgHS9NoCEdAnpn7VnVXm3V9lChoBkdAbq8HDaXa8GgHS9NoCEdAnpoTnJT2nXV9lChoBkdAc36fHggow2gHS/hoCEdAnprCLuQZGnV9lChoBkdAcSZrhBJI2GgHS95oCEdAnps0HyEtd3V9lChoBkdActp3WFvhqGgHS75oCEdAnpteRcNYsHV9lChoBkdAcBCJ9iMHbGgHS+NoCEdAnpxu+yquKXV9lChoBkdAcHFd3B55aGgHTQgBaAhHQJ6ch7SiM5x1fZQoaAZHQHCCkvsZ5zJoB0v2aAhHQJ6dOSW7e2x1fZQoaAZHQHJNYKx9oexoB0vSaAhHQJ6d16MR6GB1fZQoaAZHQHOoIexOclRoB0vFaAhHQJ6d12B8QZp1fZQoaAZHQHIfUqMFUyZoB0vVaAhHQJ6d9qmCROl1fZQoaAZHQHB2/vKEFntoB0vTaAhHQJ6e2bQTmGN1fZQoaAZHQHEDxbwBo25oB00MAWgIR0CenuQJHAh0dX2UKGgGR0Bvm+85CF9KaAdL12gIR0CenvJQLux9dWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 460,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
  "dtype": "float32",
59
  "bounded_below": "[ True True True True True True True True]",
60
  "bounded_above": "[ True True True True True True True True]",
 
65
  "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
  "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
  "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
 
76
  "dtype": "int64",
77
  "_np_random": null
78
  },
79
+ "n_envs": 16,
80
  "n_steps": 2048,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bef423f8460c4220ab976db73d30846f8e10fa3111b3e3771f4d067fa04e5ad4
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32db412399d6bc668b5678970644b7d320fc32ab1fa2e12af3a8b849b4f8343a
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f53b5425485dee0a03bd06eee76cd9f754a959e849f0bc89f1acde7d6064363c
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:221a9356ed1a96436a90bf128d5934d1611017cdea4bd8c68ccb017f06c6b162
3
  size 43329
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 271.31798849508493, "std_reward": 17.364106142785804, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-10T21:07:12.173360"}
 
1
+ {"mean_reward": 281.2959535293984, "std_reward": 23.041989015367825, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-14T15:31:35.100584"}