--- license: mit library_name: peft tags: - trl - sft - generated_from_trainer base_model: microsoft/Phi-3-mini-4k-instruct datasets: - generator model-index: - name: cls_fomc_phi3_v1 results: [] --- # cls_fomc_phi3_v1 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.7320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8109 | 0.3883 | 20 | 0.7927 | | 0.7639 | 0.7767 | 40 | 0.7570 | | 0.6942 | 1.1650 | 60 | 0.7449 | | 0.6797 | 1.5534 | 80 | 0.7417 | | 0.6899 | 1.9417 | 100 | 0.7320 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1