Sorour commited on
Commit
319264c
·
verified ·
1 Parent(s): 78e6f8c

Model save

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: peft
4
+ tags:
5
+ - trl
6
+ - sft
7
+ - generated_from_trainer
8
+ base_model: microsoft/Phi-3-mini-4k-instruct
9
+ datasets:
10
+ - generator
11
+ model-index:
12
+ - name: cls_fomc_phi3_v1
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # cls_fomc_phi3_v1
20
+
21
+ This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the generator dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.6130
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 0.0002
43
+ - train_batch_size: 1
44
+ - eval_batch_size: 8
45
+ - seed: 42
46
+ - gradient_accumulation_steps: 4
47
+ - total_train_batch_size: 4
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: constant
50
+ - lr_scheduler_warmup_ratio: 0.03
51
+ - num_epochs: 2
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss |
57
+ |:-------------:|:------:|:----:|:---------------:|
58
+ | 0.6352 | 0.3089 | 20 | 0.6405 |
59
+ | 0.6186 | 0.6178 | 40 | 0.6192 |
60
+ | 0.6122 | 0.9266 | 60 | 0.6108 |
61
+ | 0.5154 | 1.2355 | 80 | 0.6209 |
62
+ | 0.5187 | 1.5444 | 100 | 0.6251 |
63
+ | 0.515 | 1.8533 | 120 | 0.6130 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - PEFT 0.11.1
69
+ - Transformers 4.41.0
70
+ - Pytorch 2.2.1+cu121
71
+ - Datasets 2.19.1
72
+ - Tokenizers 0.19.1