File size: 2,389 Bytes
a286c52 3aaed2f a286c52 3aaed2f a286c52 3aaed2f a286c52 3aaed2f a286c52 3aaed2f a286c52 3aaed2f a286c52 3aaed2f a286c52 3aaed2f a286c52 3aaed2f a286c52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import streamlit as st
import tensorflow as tf
from tensorflow import keras
from keras import models
from PIL import Image
import numpy as np
import cv2
import io
# Some constants to be used in the program
IMG_SIZE = (32,32)
# Character mapping for the character prediction
char_map = {
0:'๐(0)', 1:'๐(1)', 2:'๐(2)', 3:'๐(3)', 4: '๐(4)', 5: '๐(5)', 6: '๐(6)', 7: '๐(7)',
8:'๐(8)', 9:'๐(9)', 10:'๐(OM)', 11:'๐(A)', 12: '๐(AA)', 13: '๐๐
(AH)', 14: '๐(I)',
15:'๐(II)',16:'๐(U)', 17:'๐
(UU)', 18:'๐(R)', 19: '๐๐บ(RR)', 20: '๐(E)', 21: '๐(AI)', 22: '๐(O)',
23:'๐(AU)', 24:'๐(L)', 25:'๐(LL)', 26:'๐(KA)', 27: '๐๐๐ณ(KSA)', 28: '๐(KHA)',29: '๐(GA)', 30: '๐(GHA)',
31:'๐(NGA)',32:'๐(CA)', 33:'๐(CHA)', 34:'๐(JA)', 35: '๐๐๐(JรฑA)', 36: '๐(JHA)',37: '๐(JHA-alt)',38: '๐(NYA)',
39:'๐(TA)', 40:'๐(TTHA)', 41:'๐(DDA)', 42:'๐(DHA)', 43: '๐(NNA)', 44: '๐(TA)', 45: '๐๐๐ฌ(TRA)', 46: '๐ (THA)',
47:'๐ก(DA)', 49:'๐ฃ(NA)', 50:'๐ฅ(PA)', 51:'๐ฆ(PHA)', 52: '๐ง(BA)', 53: '๐จ(BHA)', 54: '๐ฉ(MA)', 55: '๐ซ(YA)',
56:'๐ฌ(RA)', 57: '๐ฎ(LA)', 58:'๐ฐ(WA)', 59:'๐ฑ(SHA)', 60: '๐ฑ(SHA-alt)', 61: '๐ฒ(SSA)', 62: '๐ณ(SA)', 63: '๐ด(HA)'
}
# Importing the model
model = models.load_model('tf_model.h5')
# Function for reading image
def file_to_array(file) -> np.ndarray:
image = np.array(Image.open(io.BytesIO(file)))
return image
# Main Streamlit app
def main():
st.title("Character Recognition")
st.write("Upload an image and the model will predict the character")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image.', use_column_width=True)
if st.button('Predict'):
image = cv2.resize(np.array(image), IMG_SIZE)
image = image.astype('float32')
image = np.expand_dims(image, axis=0)
output = model.predict(image)
result = char_map[np.argmax(output)]
st.success(f'Prediction: {result}')
if __name__ == "__main__":
main()
|