--- library_name: transformers license: mit base_model: dbmdz/bert-base-turkish-uncased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: MyHateSpeechDetection results: [] --- # MyHateSpeechDetection This model is a fine-tuned version of [dbmdz/bert-base-turkish-uncased](https://huggingface.co/dbmdz/bert-base-turkish-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3951 - F1: 0.7481 - Roc Auc: 0.8138 - Accuracy: 0.6111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 40 - eval_batch_size: 20 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:------:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.1319 | 0.3636 | 100 | 0.4029 | 0.7428 | 0.8106 | 0.6020 | | 0.1821 | 0.7273 | 200 | 0.3951 | 0.7481 | 0.8138 | 0.6111 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3