Snarcy nielsr HF Staff commited on
Commit
8f99b88
·
verified ·
1 Parent(s): 2acd8f9

Improve model card: refine pipeline tag and add GitHub link (#1)

Browse files

- Improve model card: refine pipeline tag and add GitHub link (f32843464db5926eda6fb7047e582665d8d73948)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +49 -61
README.md CHANGED
@@ -1,63 +1,50 @@
1
  ---
 
 
 
 
 
2
  license: cc-by-4.0
 
3
  tags:
4
- - red-blood-cells
5
- - hematology
6
- - medical-imaging
7
- - vision-transformer
8
- - dino
9
- - dinov2
10
- - feature-extraction
11
- - foundation-model
12
- library_name: timm
13
- datasets:
14
- - Elsafty
15
- - Chula
16
- - DSE
17
- pipeline_tag: feature-extraction
18
  model-index:
19
- - name: RedDino-base
20
- results:
21
- - task:
22
- type: image-classification
23
- name: RBC Shape Classification
24
- dataset:
25
- name: Elsafty
26
- type: Classification
27
- metrics:
28
- - type: Weighted F1
29
- value: 88.1
30
- - type: Balanced Accuracy
31
- value: 89.3
32
- - type: Accuracy
33
- value: 88.2
34
- - task:
35
- type: image-classification
36
- name: RBC Shape Classification
37
- dataset:
38
- name: Chula
39
- type: Classification
40
- metrics:
41
- - type: Weighted F1
42
- value: 83.8
43
- - type: Balanced Accuracy
44
- value: 78.6
45
- - type: Accuracy
46
- value: 83.8
47
- - task:
48
- type: image-classification
49
- name: RBC Shape Classification
50
- dataset:
51
- name: DSE
52
- type: Classification
53
- metrics:
54
- - type: Weighted F1
55
- value: 85.9
56
- - type: Balanced Accuracy
57
- value: 57.9
58
- - type: Accuracy
59
- value: 86.0
60
  ---
 
61
  # RedDino-base
62
 
63
  **RedDino** is a self-supervised Vision Transformer foundation model specifically designed for **red blood cell (RBC)** image analysis.
@@ -68,17 +55,18 @@ Unlike general-purpose models pretrained on natural images, RedDino incorporates
68
 
69
  > 🧠 Developed by [Luca Zedda](https://orcid.org/0009-0001-8488-1612), [Andrea Loddo](https://orcid.org/0000-0002-6571-3816), [Cecilia Di Ruberto](https://orcid.org/0000-0003-4641-0307), and [Carsten Marr](https://orcid.org/0000-0003-2154-4552)
70
  > 🏥 University of Cagliari & Helmholtz Munich
71
- > 📄 Preprint: [arXiv:2508.08180](https://arxiv.org/abs/2508.08180)
 
72
 
73
  ---
74
 
75
  ## Model Details
76
 
77
- - **Architecture:** ViT-base, patch size 14
78
- - **SSL framework:** DINOv2 (customized for RBC morphology)
79
- - **Pretraining dataset:** 1.25M RBC images from 18 datasets
80
- - **Embedding size:** 768
81
- - **Applications:** RBC morphology classification, feature extraction, batch-effect–robust analysis
82
 
83
  ## Example Usage
84
 
 
1
  ---
2
+ datasets:
3
+ - Elsafty
4
+ - Chula
5
+ - DSE
6
+ library_name: timm
7
  license: cc-by-4.0
8
+ pipeline_tag: image-feature-extraction
9
  tags:
10
+ - red-blood-cells
11
+ - hematology
12
+ - medical-imaging
13
+ - vision-transformer
14
+ - dino
15
+ - dinov2
16
+ - feature-extraction
17
+ - foundation-model
 
 
 
 
 
 
18
  model-index:
19
+ - name: RedDino-base
20
+ results:
21
+ - task:
22
+ type: image-classification
23
+ name: RBC Shape Classification
24
+ dataset:
25
+ name: Elsafty
26
+ type: Classification
27
+ metrics:
28
+ - type: Weighted F1
29
+ value: 88.1
30
+ - type: Balanced Accuracy
31
+ value: 89.3
32
+ - type: Accuracy
33
+ value: 88.2
34
+ - type: Weighted F1
35
+ value: 83.8
36
+ - type: Balanced Accuracy
37
+ value: 78.6
38
+ - type: Accuracy
39
+ value: 83.8
40
+ - type: Weighted F1
41
+ value: 85.9
42
+ - type: Balanced Accuracy
43
+ value: 57.9
44
+ - type: Accuracy
45
+ value: 86.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  ---
47
+
48
  # RedDino-base
49
 
50
  **RedDino** is a self-supervised Vision Transformer foundation model specifically designed for **red blood cell (RBC)** image analysis.
 
55
 
56
  > 🧠 Developed by [Luca Zedda](https://orcid.org/0009-0001-8488-1612), [Andrea Loddo](https://orcid.org/0000-0002-6571-3816), [Cecilia Di Ruberto](https://orcid.org/0000-0003-4641-0307), and [Carsten Marr](https://orcid.org/0000-0003-2154-4552)
57
  > 🏥 University of Cagliari & Helmholtz Munich
58
+ > 📄 Preprint: [arXiv:2508.08180](https://arxiv.org/abs/2508.08180)
59
+ > 💻 Code: [https://github.com/Snarci/RedDino](https://github.com/Snarci/RedDino)
60
 
61
  ---
62
 
63
  ## Model Details
64
 
65
+ - **Architecture:** ViT-base, patch size 14
66
+ - **SSL framework:** DINOv2 (customized for RBC morphology)
67
+ - **Pretraining dataset:** 1.25M RBC images from 18 datasets
68
+ - **Embedding size:** 768
69
+ - **Applications:** RBC morphology classification, feature extraction, batch-effect–robust analysis
70
 
71
  ## Example Usage
72