Improve model card: refine pipeline tag and add GitHub link (#1)
Browse files- Improve model card: refine pipeline tag and add GitHub link (f32843464db5926eda6fb7047e582665d8d73948)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,63 +1,50 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
2 |
license: cc-by-4.0
|
|
|
3 |
tags:
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
library_name: timm
|
13 |
-
datasets:
|
14 |
-
- Elsafty
|
15 |
-
- Chula
|
16 |
-
- DSE
|
17 |
-
pipeline_tag: feature-extraction
|
18 |
model-index:
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
value: 83.8
|
47 |
-
- task:
|
48 |
-
type: image-classification
|
49 |
-
name: RBC Shape Classification
|
50 |
-
dataset:
|
51 |
-
name: DSE
|
52 |
-
type: Classification
|
53 |
-
metrics:
|
54 |
-
- type: Weighted F1
|
55 |
-
value: 85.9
|
56 |
-
- type: Balanced Accuracy
|
57 |
-
value: 57.9
|
58 |
-
- type: Accuracy
|
59 |
-
value: 86.0
|
60 |
---
|
|
|
61 |
# RedDino-base
|
62 |
|
63 |
**RedDino** is a self-supervised Vision Transformer foundation model specifically designed for **red blood cell (RBC)** image analysis.
|
@@ -68,17 +55,18 @@ Unlike general-purpose models pretrained on natural images, RedDino incorporates
|
|
68 |
|
69 |
> 🧠 Developed by [Luca Zedda](https://orcid.org/0009-0001-8488-1612), [Andrea Loddo](https://orcid.org/0000-0002-6571-3816), [Cecilia Di Ruberto](https://orcid.org/0000-0003-4641-0307), and [Carsten Marr](https://orcid.org/0000-0003-2154-4552)
|
70 |
> 🏥 University of Cagliari & Helmholtz Munich
|
71 |
-
> 📄 Preprint: [arXiv:2508.08180](https://arxiv.org/abs/2508.08180)
|
|
|
72 |
|
73 |
---
|
74 |
|
75 |
## Model Details
|
76 |
|
77 |
-
-
|
78 |
-
-
|
79 |
-
-
|
80 |
-
-
|
81 |
-
-
|
82 |
|
83 |
## Example Usage
|
84 |
|
|
|
1 |
---
|
2 |
+
datasets:
|
3 |
+
- Elsafty
|
4 |
+
- Chula
|
5 |
+
- DSE
|
6 |
+
library_name: timm
|
7 |
license: cc-by-4.0
|
8 |
+
pipeline_tag: image-feature-extraction
|
9 |
tags:
|
10 |
+
- red-blood-cells
|
11 |
+
- hematology
|
12 |
+
- medical-imaging
|
13 |
+
- vision-transformer
|
14 |
+
- dino
|
15 |
+
- dinov2
|
16 |
+
- feature-extraction
|
17 |
+
- foundation-model
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
model-index:
|
19 |
+
- name: RedDino-base
|
20 |
+
results:
|
21 |
+
- task:
|
22 |
+
type: image-classification
|
23 |
+
name: RBC Shape Classification
|
24 |
+
dataset:
|
25 |
+
name: Elsafty
|
26 |
+
type: Classification
|
27 |
+
metrics:
|
28 |
+
- type: Weighted F1
|
29 |
+
value: 88.1
|
30 |
+
- type: Balanced Accuracy
|
31 |
+
value: 89.3
|
32 |
+
- type: Accuracy
|
33 |
+
value: 88.2
|
34 |
+
- type: Weighted F1
|
35 |
+
value: 83.8
|
36 |
+
- type: Balanced Accuracy
|
37 |
+
value: 78.6
|
38 |
+
- type: Accuracy
|
39 |
+
value: 83.8
|
40 |
+
- type: Weighted F1
|
41 |
+
value: 85.9
|
42 |
+
- type: Balanced Accuracy
|
43 |
+
value: 57.9
|
44 |
+
- type: Accuracy
|
45 |
+
value: 86.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
---
|
47 |
+
|
48 |
# RedDino-base
|
49 |
|
50 |
**RedDino** is a self-supervised Vision Transformer foundation model specifically designed for **red blood cell (RBC)** image analysis.
|
|
|
55 |
|
56 |
> 🧠 Developed by [Luca Zedda](https://orcid.org/0009-0001-8488-1612), [Andrea Loddo](https://orcid.org/0000-0002-6571-3816), [Cecilia Di Ruberto](https://orcid.org/0000-0003-4641-0307), and [Carsten Marr](https://orcid.org/0000-0003-2154-4552)
|
57 |
> 🏥 University of Cagliari & Helmholtz Munich
|
58 |
+
> 📄 Preprint: [arXiv:2508.08180](https://arxiv.org/abs/2508.08180)
|
59 |
+
> 💻 Code: [https://github.com/Snarci/RedDino](https://github.com/Snarci/RedDino)
|
60 |
|
61 |
---
|
62 |
|
63 |
## Model Details
|
64 |
|
65 |
+
- **Architecture:** ViT-base, patch size 14
|
66 |
+
- **SSL framework:** DINOv2 (customized for RBC morphology)
|
67 |
+
- **Pretraining dataset:** 1.25M RBC images from 18 datasets
|
68 |
+
- **Embedding size:** 768
|
69 |
+
- **Applications:** RBC morphology classification, feature extraction, batch-effect–robust analysis
|
70 |
|
71 |
## Example Usage
|
72 |
|