# coding=utf-8 # modeling_sam2.py import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import CrossEntropyLoss from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.modeling_utils import PreTrainedModel from transformers.configuration_utils import PretrainedConfig # ----------------------------- # Config # ----------------------------- @dataclass class Sam2Config(PretrainedConfig): model_type = "sam2" vocab_size: int = 50257 d_model: int = 384 n_layers: int = 6 n_heads: int = 6 ff_mult: float = 4.0 dropout: float = 0.1 pad_token_id: int = 50256 # default GPT-2 eos bos_token_id: int = 50256 eos_token_id: int = 50256 # ----------------------------- # Building blocks # ----------------------------- class RMSNorm(nn.Module): def __init__(self, d, eps=1e-6): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(d)) def forward(self, x): norm = x.pow(2).mean(-1, keepdim=True).add(self.eps).rsqrt() return self.weight * x * norm class MHA(nn.Module): def __init__(self, d_model, n_heads, dropout=0.0): super().__init__() self.n_heads = n_heads self.head_dim = d_model // n_heads self.q_proj = nn.Linear(d_model, d_model, bias=False) self.k_proj = nn.Linear(d_model, d_model, bias=False) self.v_proj = nn.Linear(d_model, d_model, bias=False) self.out_proj = nn.Linear(d_model, d_model, bias=False) self.dropout = nn.Dropout(dropout) def forward(self, x, attn_mask=None): B, T, C = x.shape q = self.q_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2) k = self.k_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2) v = self.v_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2) scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim) causal = torch.triu(torch.ones(T, T, device=x.device, dtype=torch.bool), diagonal=1) scores = scores.masked_fill(causal, float("-inf")) if attn_mask is not None: key_mask = attn_mask.unsqueeze(1).unsqueeze(2) scores = scores.masked_fill(~key_mask.bool(), float("-inf")) attn = F.softmax(scores, dim=-1) out = torch.matmul(self.dropout(attn), v).transpose(1, 2).contiguous().view(B, T, C) return self.out_proj(out) class SwiGLU(nn.Module): def __init__(self, d_model, d_ff, dropout=0.0): super().__init__() self.w1 = nn.Linear(d_model, d_ff, bias=False) self.w2 = nn.Linear(d_model, d_ff, bias=False) self.w3 = nn.Linear(d_ff, d_model, bias=False) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.w3(self.dropout(F.silu(self.w1(x)) * self.w2(x))) class Block(nn.Module): def __init__(self, d_model, n_heads, ff_mult, dropout=0.0): super().__init__() self.norm1 = RMSNorm(d_model) self.attn = MHA(d_model, n_heads, dropout=dropout) self.norm2 = RMSNorm(d_model) self.ff = SwiGLU(d_model, int(ff_mult * d_model), dropout=dropout) self.drop = nn.Dropout(dropout) def forward(self, x, attn_mask=None): x = x + self.drop(self.attn(self.norm1(x), attn_mask=attn_mask)) x = x + self.drop(self.ff(self.norm2(x))) return x # ----------------------------- # Main model # ----------------------------- class Sam2PreTrainedModel(PreTrainedModel): config_class = Sam2Config base_model_prefix = "sam2" supports_gradient_checkpointing = False def _init_weights(self, module): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, mean=0.0, std=0.02) class Sam2Model(Sam2PreTrainedModel): def __init__(self, config: Sam2Config): super().__init__(config) self.embed = nn.Embedding(config.vocab_size, config.d_model) self.blocks = nn.ModuleList([ Block(config.d_model, config.n_heads, config.ff_mult, dropout=config.dropout) for _ in range(config.n_layers) ]) self.norm = RMSNorm(config.d_model) self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) self.lm_head.weight = self.embed.weight self.dropout = nn.Dropout(config.dropout) self.post_init() def forward( self, input_ids: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.LongTensor] = None, **kwargs ) -> Union[Tuple, CausalLMOutputWithPast]: x = self.embed(input_ids) for blk in self.blocks: x = blk(x, attn_mask=attention_mask) x = self.norm(x) logits = self.lm_head(x) loss = None if labels is not None: shift_logits = logits[:, :-1, :].contiguous() shift_labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss(ignore_index=-100) loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=None, hidden_states=None, attentions=None, ) # ----------------------------- # AutoModel registration # ----------------------------- from transformers import AutoConfig, AutoModelForCausalLM AutoConfig.register("sam2", Sam2Config) AutoModelForCausalLM.register(Sam2Config, Sam2Model)