Text Generation
Transformers
Safetensors
English
doge
conversational
custom_code
JingzeShi commited on
Commit
2a2064f
·
verified ·
1 Parent(s): 834be5e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -167
README.md CHANGED
@@ -1,199 +1,102 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
 
 
 
 
92
 
93
- #### Training Hyperparameters
 
 
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
 
 
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
 
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ datasets:
5
+ - HuggingFaceTB/smollm-corpus
6
+ language:
7
+ - en
8
+ pipeline_tag: text-generation
9
  ---
10
 
 
11
 
12
+ # **Doge 160M**
13
 
14
+ <div align="center">
15
+ <img src="https://huggingface.co/spaces/SmallDoge/README/resolve/main/org_icon.png" width="100%" alt="SmallDoge" />
16
+ </div>
17
+ <hr>
18
+ <div align="center">
19
+ <a href="https://arxiv.org/abs/2412.11834" target="_blank" style="margin: 2px;">
20
+ <img alt="arXiv" src="https://img.shields.io/static/v1?label=arXiv&message=2412.11834&color=B31B1B&logo=arXiv" style="display: inline-block; vertical-align: middle;"/>
21
+ </a>
22
+ <a href="https://github.com/SmallDoges/small-doge" target="_blank" style="margin: 2px;">
23
+ <img alt="GitHub" src="https://img.shields.io/badge/GitHub-SmallDoge-181717?logo=github" style="display: inline-block; vertical-align: middle;"/>
24
+ </a>
25
+ <a href="https://huggingface.co/SmallDoge" target="_blank" style="margin: 2px;">
26
+ <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-SmallDoge-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
27
+ </a>
28
+ <a href="https://github.com/SmallDoges/small-doge/blob/main/LICENSE" style="margin: 2px;">
29
+ <img alt="License" src="https://img.shields.io/badge/License-Apache--2.0-blue.svg" style="display: inline-block; vertical-align: middle;"/>
30
+ </a>
31
+ </div>
32
 
33
+ Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by [SmallDoge](https://huggingface.co/SmallDoge) community, for detailed algorithm and model architecture, please refer to [Wonderful Matrices](https://arxiv.org/abs/2412.11834), all training details and code are publicly available on the [small-doge](https://github.com/SmallDoges/small-doge) repository.
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  ## Uses
37
 
38
+ ```python
39
+ >>> from transformers import AutoTokenizer, AutoModelForCausalLM
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
+ >>> tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-160M")
42
+ >>> model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-160M", trust_remote_code=True)
43
+ >>> inputs = tokenizer("Hey how are you doing?", return_tensors="pt")
44
 
45
+ >>> out = model.generate(**inputs, max_new_tokens=100)
46
+ >>> print(tokenizer.batch_decode(out))
47
+ ```
48
 
 
49
 
50
+ ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
+ We build the Doge by doing Per-Training on [Smollm-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus).
53
 
54
+ > NOTE: If you want to continue pre-training this model, you can find the unconverged checkpoint [here](https://huggingface.co/SmallDoge/Doge-160M-checkpoint).
55
 
56
+ > NOTE: These models has not been fine-tuned for instruction, the instruction model is [here](https://huggingface.co/SmallDoge/Doge-160M-Instruct).
57
 
58
+ > TODO: The larger model is under training and will be uploaded soon.
59
 
60
+ **Pre-Training**:
61
 
62
+ | Model | Training Data | Steps | Content Length | Tokens | LR | Batch Size | Precision | RTX 4090 GPU hours |
63
+ |---|---|---|---|---|---|---|---|---|
64
+ | [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 8k | 2048 | 4B | 8e-3 | 0.5M | bfloat16 | 14 |
65
+ | [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 16k | 2048 | 16B | 6e-3 | 1M | bfloat16 | 128 |
66
+ | [Doge-160M](https://huggingface.co/SmallDoge/Doge-160M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 24k | 2048 | 32B | 4e-3 | 1.5M | bfloat16 | 522 |
67
 
68
+ **Evaluation**:
69
 
70
+ | Model | MMLU | TriviaQA | ARC | PIQA | HellaSwag | OBQA | Winogrande | tokens / s on CPU |
71
+ |---|---|---|---|---|---|---|---|---|
72
+ | [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | 25.4 | 0.03 | 29.8 | 58.4 | 27.3 | 25.6 | 50.2 | 142 |
73
+ | [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | 26.4 | 0.2 | 37.9 | 61.4 | 31.5 | 28.0 | 50.8 | 62 |
74
+ | [Doge-160M](https://huggingface.co/SmallDoge/Doge-160M) | 29.2 | 4.8 | 44.4 | 66.3 | 38.7 | 34.4 | 52.2 | 28 |
75
 
76
+ > All evaluations are done using five-shot settings, without additional training on the benchmarks.
77
 
78
+ **Procedure**:
79
 
80
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/loser_cheems/huggingface/runs/3uyc9a89)
81
 
 
82
 
83
+ **Environment**:
84
 
85
+ - Image: nvcr.io/nvidia/pytorch:24.12-py3
86
+ - Hardware: 1x NVIDIA RTX 4090
87
+ - Software: Transformers
88
 
 
89
 
90
+ ## Citation
91
 
92
+ ```bibtex
93
+ @misc{shi2024wonderfulmatrices,
94
+ title={Wonderful Matrices: Combining for a More Efficient and Effective Foundation Model Architecture},
95
+ author={Jingze Shi and Bingheng Wu},
96
+ year={2024},
97
+ eprint={2412.11834},
98
+ archivePrefix={arXiv},
99
+ primaryClass={cs.LG},
100
+ url={https://arxiv.org/abs/2412.11834},
101
+ }
102
+ ```